Skip to main content

The Simulation of Oscillatory Circuits: An Efficient Integration Scheme

  • Chapter
Progress in Industrial Mathematics at ECMI 94
  • 113 Accesses

Abstract

Circuit simulation is a standard task for the computer-aided design of electronic circuits. From the mathematical point of view, the transient simulation is well-understood for most circuits. For very large circuits (e.g., memory chips) and highly oscillatory circuits (e.g., quartz oscillators) standard techniques will fail due to the very large computational effort for the numerical simulation. The exploitation of latency is a remedy for very large circuits, see, e.g., [4]. The simulation of highly oscillatory circuits, however, requires a quite different approach.

Granted partly by the Bayerishe Forshungsstiftung within the “Bavarian Concortion for High Performance Scientific Computing — FORTWIHT”. This work is part of the project “Numerical simulatoin of electric circuits and semiconductor devices”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antognetti, P.; Massobrio, G. (eds.): Semiconductor device modeling with SPICE. McGraw-Hill, 1988.

    Google Scholar 

  2. Denk, G.: A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. APNUM 13 (1993), 57–67.

    MathSciNet  MATH  Google Scholar 

  3. Feldmann, U.; Wever, U.; Zheng, Q.; Schultz, R.; Wriedt, H.: Algorithms for modern circuit simulation. AEÛ 46 (1992), 274–285.

    Google Scholar 

  4. Giinther, M.; Rentrop, P.: Multirate ROW methods and latency of electric circuits. APNUM 13 (1993), 83–102.

    Google Scholar 

  5. Hersch, J.: Contribution à la méthode des equations aux differences. ZAMP IXa(2) (1958), 129–180.

    Google Scholar 

  6. Hindmarsh, A. C.: ODEPACK, a systemized collection of ODE solvers. Lawrence Livermore National Laboratory, Report UCRL-88007, 1982.

    Google Scholar 

  7. Kampowsky, W.; Rentrop, P.; Schmidt, W.: Classification and numerical sim-ulation of electric circuits. Surv. Math. Ind. 2 (1992), 23–65.

    MathSciNet  MATH  Google Scholar 

  8. Shichman, H.; Hodges, D. A.: Insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits SC-3 (1968), 285–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd and B. G. Teubner

About this chapter

Cite this chapter

Denk, G. (1996). The Simulation of Oscillatory Circuits: An Efficient Integration Scheme. In: Neunzert, H. (eds) Progress in Industrial Mathematics at ECMI 94. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82967-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82967-2_35

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-82968-9

  • Online ISBN: 978-3-322-82967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics