Skip to main content

Numerical solution of differential-algebraic equations in electric circuit simulation

  • Chapter
Progress in Industrial Mathematics at ECMI 94

Abstract

The CAD-based automatic generation of electrical network equations leads to differential-algebraic equations. To achieve a both efficient and reliable simulation tool, numerical integration software must be tailored to the special structure and properties of these systems. Hence alternatives to the classical BDF-approach are discussed. Numerical simulation results of a charge pump circuit show the merits of charge-oriented ROW-methods.

Granted by the Bayerische Forschungsstiftung within the “Bavarian Consortium for High Performance Scientific Computing — FORTWIHR”. This work is part of the project “Numerical simulation of electric circuits and semiconductor devices.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denk, G.: An improved numerical integration method in the circuit simulator SPICE2-S. In Bank, R. E. et al. (ed.): Mathematical modelling and simulation of electrical circuits and semiconductor devices. ISNM 93, Birkhäuser Verlag, Basel (1990), pp. 85–99.

    Google Scholar 

  2. Feldmann, U.; Wever, U. A.; Zheng, Q.; Schultz, R.: Algorithms for modern circuit simulation. Archiv für Elektronik und Übertragungstechnik 46 (1992), pp. 274–285.

    Google Scholar 

  3. Gear, C. W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory CT-18 (1971), pp. 89–95.

    Google Scholar 

  4. Gerstberger, R.; Günther, M.: Charge-oriented extrapolation methods in digital circuit simulation. To appear in Appl. Numer. Math.

    Google Scholar 

  5. Günther, M.: Charge-oriented modelling of electric circuits and Rosenbrock- Wanner methods. To appear in Journal of Computing and Information.

    Google Scholar 

  6. Günther, M.: Ladungsorientierte Rosenbrock-Wanner-Methoden zur numerischen Simulation digitaler Schaltungen. Dissertation, Technische Universität München, Institut für Informatik (1995).

    Google Scholar 

  7. Günther, M.; Feldmann, U.: The DAE-index in electric circuit simulation. To appear in Mathematics and Computers in Simulation.

    Google Scholar 

  8. Günther, M.; Rentrop, P.: Suitable one-step methods for quasilinear-implicit ode’s. Report TUM-M9405, Mathematisches Institut, Technische Universität München (1994).

    Google Scholar 

  9. Ho, C.-W.; Ruehli, A. E.; Brennan, P. A.: The modified nodal approach to network analysis. IEEE Trans. Circuits and Systems CAS-22 (1975), pp. 505–509.

    Google Scholar 

  10. Kampowsky, W.; Rentrop, P.; Schmidt, W.: Classification and numerical simulation of electric circuits. Surv. Math. Ind. 2 (1992), pp. 23–65.

    MathSciNet  MATH  Google Scholar 

  11. Lubich, Ch.; Roche, M.: Rosenbrock Methods for differential-algebraic systems with solution-dependent singular matrix multiplying the derivative. Computing 43 (1990), pp. 325–342.

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyer, J. E.: MOS models and circuit simulation. RCA Rev. 32 (1971), pp. 42–63.

    Google Scholar 

  13. Sakallah, K. A.; Yen, Y.; Greenberg, S. S.: A first-order charge conserving MOS capacitance model. IEEE Trans. Computer-Aided Design CAD-9 (1990), pp. 99–108.

    Google Scholar 

  14. Sieber, E.-R.; Feldmann, U.; Schultz, R.; Wriedt, H.: Timestep control for charge conserving integration in circuit simulation. In Bank, R. E. et al. (ed.): Mathematical modelling and simulation of electrical circuits and semiconductor devices. ISNM 117, Birkhäuser Verlag, Basel (1994), pp. 103–113.

    Chapter  Google Scholar 

  15. Ward, D. E.; Dutton, R. W.: A charge-oriented model for MOS transistor capacitances. IEEE J. Solid-State Circuits SC-13 (1978), pp. 703–708.

    Google Scholar 

  16. Yang, P.; Epler, B. D.; Chatterjee, P. K.: An investigation of the charge conservation problem for MOSFET circuit simulation. IEEE J. Solid State Circuits SC-18 (1983), pp. 128–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd and B. G. Teubner

About this chapter

Cite this chapter

Günther, M. (1996). Numerical solution of differential-algebraic equations in electric circuit simulation. In: Neunzert, H. (eds) Progress in Industrial Mathematics at ECMI 94. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82967-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82967-2_34

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-82968-9

  • Online ISBN: 978-3-322-82967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics