Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 853))

Abstract

The topic of unmanned aerial vehicle (UAV) routing is transitioning from an emerging topic to a growing research area with UAVs being used for inspection or even material transport as part of multi-modal networks. The nature of the problem has revealed a need to identify the factors affecting the energy consumption of UAVs during execution of missions and examine the general characteristics of the consumption, as these are critical constraining factors in UAV routing. This paper presents the unique characteristics that influence the energy consumption of UAV routing and the current state of research on the topic. This paper provides the first overview of the current state of and contributions to the area of energy consumption in UAVs followed by a general categorization of the factors affecting energy consumptions of UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sitek, P., Wikarek, J.: Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach. Ann. Oper. Res. (2017). https://doi.org/10.1007/s10479-017-2722-x

    Article  Google Scholar 

  2. Sitek, P.: A hybrid approach to the two-echelon capacitated vehicle routing problem (2E-CVRP) BT - recent advances in automation, robotics and measuring techniques. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.), pp. 251–263. Springer International Publishing, Cham (2014)

    Google Scholar 

  3. Nielsen, I., Dang, Q.V., Bocewicz, G., Banaszak, Z.: A methodology for implementation of mobile robot in adaptive manufacturing environments. J. Intell. Manuf. 28, 1171–1188 (2017). https://doi.org/10.1007/s10845-015-1072-2

    Article  Google Scholar 

  4. Yakici, E.: Solving location and routing problem for UAVs. Comput. Ind. Eng. 102, 294–301 (2016). https://doi.org/10.1016/j.cie.2016.10.029

    Article  Google Scholar 

  5. Bolton, G.E., Katok, E.: Learning-by-doing in the newsvendor problem a laboratory investigation of the role of experience and feedback. Manuf. Serv. Oper. Manag. 10, 519–538 (2004). https://doi.org/10.1287/msom.1060.0190

    Article  Google Scholar 

  6. Avellar, G.S.C., Pereira, G.A.S., Pimenta, L.C.A., Iscold, P.: Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors (Switzerland) 15, 27783–27803 (2015). https://doi.org/10.3390/s151127783

    Article  Google Scholar 

  7. Khosiawan, Y., Nielsen, I.: A system of UAV application in indoor environment. Prod. Manuf. Res. 4, 2–22 (2016). https://doi.org/10.1080/21693277.2016.1195304

    Article  Google Scholar 

  8. Barrientos, A., Colorado, J., del Cerro, J., et al.: Aerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robots. J. F. Robot. 28, 667–689 (2011). https://doi.org/10.1002/rob

    Article  Google Scholar 

  9. Khosiawan, Y., Park, Y., Moon, I., et al.: Task scheduling system for UAV operations in indoor environment. Neural Comput. Appl. 9, 1–29 (2018). https://doi.org/10.1007/s00521-018-3373-9

    Article  Google Scholar 

  10. Zhang, M., Su, C., Liu, Y., et al.: Unmanned aerial vehicle route planning in the presence of a threat environment based on a virtual globe platform. ISPRS Int. J. Geo Inf. 5, 184 (2016). https://doi.org/10.3390/ijgi5100184

    Article  Google Scholar 

  11. Xiang, J., Liu, Y., Luo, Z.: Flight safety measurements of UAVs in congested airspace. Chin. J. Aeronaut. 29, 1355–1366 (2016). https://doi.org/10.1016/j.cja.2016.08.017

    Article  Google Scholar 

  12. Khosiawan, Y., Khalfay, A., Nielsen, I.: Scheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimization. Int. J. Adv. Robot. Syst. 15, 1–15 (2018). https://doi.org/10.1177/1729881417754145

    Article  Google Scholar 

  13. Popper, B.: Drones could make Amazon’s dream of free delivery profitable - The Verge (2016). http://www.theverge.com/33

  14. Bonn: DHL | Press Release | English. In: DHL (2017). http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html. Accessed 11 Apr 2017

  15. Wang, X., Poikonen, S., Golden, B.: The Vehicle Routing Problem with Drones : A Worst-Case Analysis Outline Introduction to VRP Introduction to VRPD, pp. 1–22 (2016)

    Google Scholar 

  16. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47, 1–16 (2016). https://doi.org/10.1109/tsmc.2016.2582745

    Article  Google Scholar 

  17. Aasen, H., Gnyp, M.L.: Spectral comparison of low-weight and UAV- based hyperspectral frame cameras with portable spectroradiometers measurements. In: Proceedings of Work UAV-Based Remote Sensing Methods for Monitoring Vegetation, pp. 1–6 (2014). https://doi.org/10.5880/tr32db.kga94.2

  18. Frazzoli, E., Bullo, F.: Decentralized algorithms for vehicle routing in a stochastic time-varying environment. In: 2004 43rd IEEE Conference on Decision Control (IEEE Cat No04CH37601), vol. 4, pp. 3357–3363 (2004). https://doi.org/10.1109/cdc.2004.1429220

  19. Sundar, K., Venkatachalam, S., Rathinam, S.: An Exact Algorithm for a Fuel-Constrained Autonomous Vehicle Path Planning Problem (2016)

    Google Scholar 

  20. Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots. IEEE Trans. Autom. Sci. Eng. 11, 287–294 (2014). https://doi.org/10.1109/TASE.2013.2279544

    Article  Google Scholar 

  21. Zhang, J., Zhao, Y., Xue, W., Li, J.: Vehicle routing problem with fuel consumption and carbon emission. Int. J. Prod. Econ. 170, 234–242 (2015). https://doi.org/10.1016/j.ijpe.2015.09.031

    Article  Google Scholar 

  22. Feng, Y., Zhang, R., Jia, G.: Vehicle routing problems with fuel consumption and stochastic travel speeds (2017). https://doi.org/10.1155/2017/6329203

  23. Kinney, G.W., Hill, R.R., Moore, J.T.: Devising a quick-running heuristic for an unmanned aerial vehicle (UAV) routing system. J. Oper. Res. Soc. 56, 776–786 (2005). https://doi.org/10.1057/palgrave.jors.2601867

    Article  MATH  Google Scholar 

  24. Yu, V.F., Lin, S.-W.: Solving the location-routing problem with simultaneous pickup and delivery by simulated annealing. Int. J. Prod. Res. 54, 1–24 (2015). https://doi.org/10.1016/j.asoc.2014.06.024

    Article  Google Scholar 

  25. Qian, Z., Wang, J., Wang, G.: Route Planning of UAV Based on Improved Ant Colony Algorithm, pp. 1421–1426 (2015)

    Google Scholar 

  26. Sarıçiçek, İ., Akkuş, Y.: Unmanned aerial vehicle hub-location and routing for monitoring geographic borders. Appl. Math. Model. 39, 3939–3953 (2015). https://doi.org/10.1016/j.apm.2014.12.010

    Article  MathSciNet  Google Scholar 

  27. Tseng, C-.M., Chau, C-.K., Elbassioni, K., Khonji, M.: Autonomous Recharging and Flight Mission Planning for Battery-operated Autonomous Drones, pp. 1–10 (2017)

    Google Scholar 

  28. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47, 70–85 (2017). https://doi.org/10.1109/TSMC.2016.2582745

    Article  Google Scholar 

  29. Guerriero, F., Surace, R., Loscri, V., Natalizio, E.: A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints. Appl. Math. Model. 38, 839–852 (2014). https://doi.org/10.1016/j.apm.2013.07.002

    Article  MathSciNet  Google Scholar 

  30. Habib, D., Jamal, H., Khan, S.A.: Employing multiple unmanned aerial vehicles for co-operative path planning. Int. J. Adv. Robot. Syst. 10, 1–9 (2013). https://doi.org/10.5772/56286

    Article  Google Scholar 

  31. Wu, J., Zhang, D., Pei, D.: Autonomous route planning for UAV when threats are uncertain. In: 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC 2014), pp. 19–22 (2015). https://doi.org/10.1109/cgncc.2014.7007214

  32. Shetty, V.K., Sudit, M., Nagi, R.: Priority-based assignment and routing of a fleet of unmanned combat aerial vehicles. Comput. Oper. Res. 35, 1813–1828 (2008). https://doi.org/10.1016/j.cor.2006.09.013

    Article  MATH  Google Scholar 

  33. Zhang, J., Jia, L., Niu, S., et al.: A space-time network-based modeling framework for dynamic unmanned aerial vehicle routing in traffic incident monitoring applications. Sensors (Switzerland) 15, 13874–13898 (2015). https://doi.org/10.3390/s150613874

    Article  Google Scholar 

  34. Leishman, D.S., (Eng.. PDFRASJG) Principles of Helicopter Aerodynamics (2006). https://doi.org/10.1002/1521-3773(20010316)40:6%3c9823::aid-anie9823%3e3.3.co;2-c

  35. Joo, H., Hwang, H.: Surrogate aerodynamic model for initial sizing of solar high-altitude long-endurance UAV. J. Aerosp. Eng. 30, 04017064 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000777

    Article  Google Scholar 

  36. Nancy, H.: Bernoulli and Newton. In: NASA Off (2015). https://www.grc.nasa.gov/WWW/K-12/airplane/bernnew.html. Accessed 4 Oct 2017

  37. David, E.: Deriving the Power for Flight Equations (2003). http://www.dinosaurtheory.com/flight_eq.html. Accessed 4 Oct 2017

  38. Tennekes, H.: The Simple Science of Flight, 2nd edn. The MIT Press Cambridge, London (2009)

    MATH  Google Scholar 

  39. National Academies of Sciences and Medicine: Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. National Academies Press (2016)

    Google Scholar 

  40. Farokhi, S.: Aircraft Propulsion. Wiley, Hoboken (2014)

    Google Scholar 

  41. Greitzer, E.M., Spakovszky, Z.S., Waitz, I.A.: 16.Unified: Thermodynamics and Propulsion Prof. Z. S. Spakovszky (2008). http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/notes.html. Accessed 4 Oct 2017

  42. Trips, D.: Aerodynamic Design and Optimization of a Long Range Mini-UAV (2010)

    Google Scholar 

  43. Hill, P.G., Peterson, C.R.: Mechanics and thermodynamics of propulsion, 764 p. Addison-Wesley Publ. Co., Reading (1992)

    Google Scholar 

  44. Francis, N.H.: Learning and Using Airplane Lift/Drag (2014)

    Google Scholar 

  45. Nigam, N., Bieniawski, S., Kroo, I., Vian, J.: Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20, 1236–1251 (2012). https://doi.org/10.1109/TCST.2011.2167331

    Article  Google Scholar 

  46. Kunz, P.J.: Aerodynamics and Design for Ultra-Low Reynolds Number Flight (2003)

    Google Scholar 

  47. Edlund, U., Nilsson, K.: Optimum Design Cruise Speed for an Efficient Short Haul Airliner, pp. 960–966 (1984)

    Google Scholar 

  48. Moyano Cano, J.: Quadrotor UAV for wind profile characterization (2013)

    Google Scholar 

  49. Administration USD of TFA: Helicopter Flying Handbook. US Department of Transportation Federal Aviation Administration, vol. 5, pp. 22–117 (2012). https://doi.org/10.1088/1751-8113/44/8/085201

  50. Thøgersen, M.L.: WindPRO/ENERGY Modelling of the Variation of Air Density with Altitude through Pressure, Humidity and Temperature (2000)

    Google Scholar 

  51. Cessford, J.R., Barwood, M.J.: The Effects of Hot and Cold Environments on Drone Component Performance and Drone Pilot Performance (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amila Thibbotuwawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thibbotuwawa, A., Nielsen, P., Zbigniew, B., Bocewicz, G. (2019). Energy Consumption in Unmanned Aerial Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018. ISAT 2018. Advances in Intelligent Systems and Computing, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-99996-8_16

Download citation

Publish with us

Policies and ethics