Advertisement

OpenMP as an Efficient Method to Parallelize Code with Dense Synchronization

  • Rafał Bocian
  • Dominika Pawłowska
  • Krzysztof StencelEmail author
  • Piotr Wiśniewski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In recent years, adding new cores and new threads are main methods to add computational power. In line with this approach in this paper we analyze the efficiency of the parallel computational model with shared memory, when dense synchronization is required. As our experimental evaluation shows, contemporary CPUs assisted with OpenMP library perform well in case of such tasks. We also present evidence that OpenMP is easy to learn and use.

References

  1. 1.
    Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007).  https://doi.org/10.1137/040617200MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Egbai, J.: Digital Wiener’s filtering in seismic data processing in Trans-Ramos Prospect of Rivers State. J. Emerg. Trends Eng. Appl. Sci. 2(1), 43–49 (2011). https://journals.co.za/content/sl_jeteas/2/1/EJC156679
  3. 3.
    Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain graphs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 141–155. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65578-9_10CrossRefGoogle Scholar
  4. 4.
    Liu, H.H.: Software Performance and Scalability: A Quantitative Approach. Wiley Publishing (2009)Google Scholar
  5. 5.
    Navarro, A., Mateo, S., Perez, J.M., Beltran, V., Ayguadé, E.: Adaptive and architecture-independent task granularity for recursive applications. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 169–182. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65578-9_12CrossRefGoogle Scholar
  6. 6.
    Schuchart, J., Nachtmann, M., Gracia, J.: Patterns for OpenMP task data dependency overhead measurements. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 156–168. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65578-9_11CrossRefGoogle Scholar
  7. 7.
    Wiśniewski, P., Stencel, K., Chlebiej, M., Wiśniewska, E.: Flying histogram optimization of statistical dominance algorithm. In: Proceedings of the 26th International Workshop on Concurrency, Specification and Programming, Warsaw, Poland, 25–27 September 2017 (2017). http://csp2017.mimuw.edu.pl/data/uploads/papers/CSP2017_paper_15.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rafał Bocian
    • 1
  • Dominika Pawłowska
    • 1
  • Krzysztof Stencel
    • 1
    Email author
  • Piotr Wiśniewski
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations