Advertisement

EYE: Big Data System Supporting Preventive and Predictive Maintenance of Robotic Production Lines

  • Jarosław Kurpanik
  • Joanna Henzel
  • Marek Sikora
  • Łukasz Wróbel
  • Marek Drewniak
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

This paper presents the EYE – data storage and analysis system. The EYE is a platform for gathering and processing data coming from production lines. It was developed on the basis of the Big Data technology, allowing not only to process the streaming data but also for performing the batch analyses. The results of data processing are presented in the form of reports and dashboards. The work contains a case study presenting an implementation of the system on a production line which is used for the production of telemetric devices.

Keywords

Big data NoSQL Predictive maintenance 

Notes

Acknowledgements

This work was supported by Polish National Centre of Research and Development from the project “Knowledge integrating shopfloor management system supporting preventive and predictive maintenance services for automotive polymorphic production framework” (grant agreement No: POIR-.01.02.00–00–0307/16-00). The project is performed as Operation 1.2:“B+R sector programs” of Intelligent Development operational program in years 2014–2020 and co-financed by European Regional Development Fund.

This research was co-financed by the Ministry of Science and Higher Education, Republic of Poland within the “Doktorat wdrożeniowy” program and carried out in part within the statutory research project of the Institute of Informatics, BK-213/RAU2/2018.

References

  1. 1.
    Apache: Projects directory - Big Data tools. https://projects.apache.org/projects.html?category#big-data
  2. 2.
    Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, vol. 18. OUP Oxford, Oxford (1997)zbMATHGoogle Scholar
  3. 3.
    Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)Google Scholar
  4. 4.
    Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.A., Caelen, O., Mazzer, Y., Bontempi, G.: SCARFF: a scalable framework for streaming credit card fraud detection with spark. Inf. Fus. 41, 182–194 (2018)CrossRefGoogle Scholar
  5. 5.
    Cattell, R.: Scalable SQL and NoSQL data stores. ACM Sigmod Rec. 39(4), 12–27 (2011)CrossRefGoogle Scholar
  6. 6.
    Cerchiello, P., Giudici, P., Nicola, G.: Twitter data models for bank risk contagion. Neurocomputing 264, 50–56 (2017)CrossRefGoogle Scholar
  7. 7.
    Ceri, S., Kaitoua, A., Masseroli, M., Pinoli, P., Venco, F.: Data management for heterogeneous genomic datasets. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(6), 1251–1264 (2017)CrossRefGoogle Scholar
  8. 8.
    Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for Apache Cassandra. In: 2015 IEEE International Congress on Big Data (BigData Congress), pp. 238–245. IEEE (2015)Google Scholar
  9. 9.
    Garcia, L., Zonouz, S.: TMQ: threat model quantification in smart grid critical infrastructures. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 584–589. IEEE (2014)Google Scholar
  10. 10.
    Gupta, A., Tyagi, S., Panwar, N., Sachdeva, S., Saxena, U.: NoSQL databases: critical analysis and comparison. In: 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), pp. 293–299. IEEE (2017)Google Scholar
  11. 11.
    Guster, D.C., Schmidt, M.B., Rice, E.P.: An empirical assessment of performance and scalability of decentralized disk storage for real-time business applications. J. Int. Bus. Discipl. 9(1) (2014)Google Scholar
  12. 12.
    Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., Khoukhi, L.: IoT technologies for smart cities. IET Netw. 7(1), 1–13 (2017)Google Scholar
  13. 13.
    Jiang, X., Duan, F., Tian, H., Wei, X.: Optimization of reliability centered predictive maintenance scheme for inertial navigation system. Reliab. Eng. Syst. Saf. 140, 208–217 (2015)CrossRefGoogle Scholar
  14. 14.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)CrossRefGoogle Scholar
  15. 15.
    Lee, B., Kim, D.K., Yang, H., Oh, S.: Model transformation between OPC UA and UML. Comput. Stand. Interfaces 50, 236–250 (2017)CrossRefGoogle Scholar
  16. 16.
    Lee, C.H., Lin, C.Y.: Implementation of lambda architecture: a restaurant recommender system over Apache Mesos. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 979–985. IEEE (2017)Google Scholar
  17. 17.
    Lee, J., Kao, H.A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Proc. Cirp 16, 3–8 (2014)CrossRefGoogle Scholar
  18. 18.
    Lee, J., Lapira, E., Bagheri, B., Kao, H.A.: Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, G., Zhu, W., Saunders, C., Gao, F., Yu, Y.: Real-time complex event processing and analytics for smart grid. Proc. Comput. Sci. 61, 113–119 (2015)CrossRefGoogle Scholar
  20. 20.
    Lotfy, A.E., Saleh, A.I., El-Ghareeb, H.A., Ali, H.A.: A middle layer solution to support ACID properties for NoSQL databases. J. King Saud Univ. Comput. Inf. Sci. 28(1), 133–145 (2016)Google Scholar
  21. 21.
    Lu, B., Xiaohui, Y.: Research on Cassandra data compaction strategies for time-series data. JCP 11(6), 504–512 (2016)Google Scholar
  22. 22.
    Luraschi, J., Kuo, K., Ushey, K., Allaire, J.: The Apache Software Foundation: sparklyr: R Interface to Apache Spark (2018). https://CRAN.R-project.org/package=sparklyr
  23. 23.
    Magnoni, L.: Monitoring WLCG with lambda-architecture: a new scalable data store and analytics platform for monitoring at petabyte scale. J. Phys. Conf. Ser. 664, 052023 (2015)CrossRefGoogle Scholar
  24. 24.
    Mars, A., Gouider, M.S., Saïd, L.B.: A new big data framework for customer opinions polarity extraction. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp. 518–531. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34099-9_40CrossRefGoogle Scholar
  25. 25.
    Nadal, S., et al.: A software reference architecture for semantic-aware big data systems. Inf. Softw. Technol. 90, 75–92 (2017)CrossRefGoogle Scholar
  26. 26.
    Penttinen, J.T.: 3GPP mobile communications: GSM. In: The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems, pp. 281–369 (2015)Google Scholar
  27. 27.
    Quijano-Sanchez, L., Liberatore, F.: The big chase: a decision support system for client acquisition applied to financial networks. Decis. Support Syst. 98, 49–58 (2017)CrossRefGoogle Scholar
  28. 28.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/
  29. 29.
    Ramesh, D., Sinha, A., Singh, S.: Data modelling for discrete time series data using Cassandra and MongoDB. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), pp. 598–601. IEEE (2016)Google Scholar
  30. 30.
    Rocha-Osorio, C., Solís-Chaves, J., Casella, I.R., Capovilla, C., Puma, J.A., Sguarezi Filho, A.: GPRS/EGPRS standards applied to DTC of a DFIG using fuzzy-PI controllers. Int. J. Electr. Power Energy Syst. 93, 365–373 (2017)CrossRefGoogle Scholar
  31. 31.
    Sharma, R., Oliveira, S.: Community detection algorithm for big social networks using hybrid architecture. Big Data Res. 10, 44–52 (2017)CrossRefGoogle Scholar
  32. 32.
    Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. Ser. B (Methodol.) 53(3), 683–690 (1991)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Silesian University of Technology: Advanced Data Analysis in Applications Group (ADAA). http://adaa.polsl.pl
  34. 34.
    Spendla, L., Kebisek, M., Tanuska, P., Hrcka, L.: Concept of predictive maintenance of production systems in accordance with industry 4.0. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000405–000410. IEEE (2017)Google Scholar
  35. 35.
    Xiao, L., Li, M., Gu, M., Sun, J.: Combinational testing of PLC programs based on the denotational semantics of instructions. In: 2014 11th World Congress on Intelligent Control and Automation (WCICA), pp. 5840–5845. IEEE (2014)Google Scholar
  36. 36.
    Zaharia, M.: Apache Spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jarosław Kurpanik
    • 1
  • Joanna Henzel
    • 1
  • Marek Sikora
    • 1
  • Łukasz Wróbel
    • 1
  • Marek Drewniak
    • 2
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Aiut Sp. z o.o.GliwicePoland

Personalised recommendations