Advertisement

A Practical Application of Skipped Steps DWT in JPEG 2000 Part 2-Compliant Compressor

  • Roman StarosolskiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In this paper, we evaluate effects of applying the fixed skipped steps discrete wavelet transform (fixed SS-DWT) variants in the lossless compression that is compliant with part 2 of the JPEG 2000 standard. Compared to results obtained previously using a modified JPEG 2000 part 1 compressor, for a large and diverse set of test images, we found that extensions of part 2 of the standard allow further bitrate improvements. We experimentally confirmed that the fixed SS-DWT variants may be obtained in compliance with the standard and we identified practical JPEG 2000 part 2-compliant compression schemes with various trade-offs between the bitrate improvement and the compression process complexity.

Keywords

Image processing Image compression standards Lossless image compression JPEG 2000 DWT RDLS Step skipping SS-DWT 

Notes

Acknowledgment

This work was supported by the 02/020/BK_17/0105 grant from the Institute of Informatics, Silesian University of Technology and by the 02/020/RGJ18/0123 grant from the Silesian University of Technology.

References

  1. 1.
    Addison, P.S.: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC Press, Boca Raton (2017)zbMATHGoogle Scholar
  2. 2.
    Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compression. Sig. Process.: Image Commun. 31, 112–133 (2015).  https://doi.org/10.1016/j.image.2014.12.007CrossRefGoogle Scholar
  3. 3.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998).  https://doi.org/10.1007/BF02476026MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Sig. Process. Mag. 26(6), 195–199, 204 (2009).  https://doi.org/10.1109/MSP.2009.934187CrossRefGoogle Scholar
  5. 5.
    ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: Core coding system. ISO/IEC International Standard 15444–1 and ITU-T Recommendation T.800 (2004)Google Scholar
  6. 6.
    ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: extensions. ISO/IEC International Standard 15444–2 and ITU-T Recommendation T.801 (2004)Google Scholar
  7. 7.
    ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: extensions for three-dimensional data. ISO/IEC International Standard 15444–10 and ITU-T Recommendation T.809 (2011)Google Scholar
  8. 8.
    ISO/IEC, ITU-T: Information technology - High efficiency coding and media delivery in heterogeneous environments - Part 2: High efficiency video coding. ISO/IEC International Standard 23008–2 and ITU-T Recommendation H.265 (2015)Google Scholar
  9. 9.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1998)CrossRefGoogle Scholar
  10. 10.
    Malvar, H.S., Sullivan, G.J., Srinivasan, S.: Lifting-based reversible color transformations for image compression. In: Proceedings of SPIE Applications of Digital Image Processing XXXI, vol. 7073, p. 707307 (2008).  https://doi.org/10.1117/12.797091
  11. 11.
    Peng, W.H., Walls, F.G., Cohen, R.A., Xu, J., Ostermann, J., MacInnis, A., Lin, T.: Overview of screen content video coding: technologies, standards, and beyond. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(4), 393–408 (2016).  https://doi.org/10.1109/JETCAS.2016.2608971CrossRefGoogle Scholar
  12. 12.
    Starosolski, R.: Reversible denoising and lifting based color component transformation for lossless image compression, arXiv:1508.06106 [cs.MM] (2016). http://arxiv.org/abs/1508.06106
  13. 13.
    Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014).  https://doi.org/10.1016/j.jvcir.2014.03.003CrossRefGoogle Scholar
  14. 14.
    Starosolski, R.: Application of reversible denoising and lifting steps to DWT in lossless JPEG 2000 for improved bitrates. Sig. Process. Image Commun. 39(A), 249–263 (2015).  https://doi.org/10.1016/j.image.2015.09.013CrossRefGoogle Scholar
  15. 15.
    Starosolski, R.: Application of reversible denoising and lifting steps to LDgEb and RCT Color space transforms for improved lossless compression. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp. 623–632. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34099-9_48CrossRefGoogle Scholar
  16. 16.
    Starosolski, R.: Application of reversible denoising and lifting steps with step skipping to color space transforms for improved lossless compression. J. Electron. Imaging 25(4), 043025 (2016).  https://doi.org/10.1117/1.JEI.25.4.043025CrossRefGoogle Scholar
  17. 17.
    Starosolski, R.: Skipping selected steps of DWT computation in lossless JPEG 2000 for improved bitrates. PLOS One 11(12), e0168704 (2016).  https://doi.org/10.1371/journal.pone.0168704CrossRefGoogle Scholar
  18. 18.
    Strutz, T.: Multiplierless reversible colour transforms and their automatic selection for image data compression. IEEE Trans. Circ. Syst. Video Technol. 23(7), 1249–1259 (2013).  https://doi.org/10.1109/TCSVT.2013.2242612CrossRefGoogle Scholar
  19. 19.
    Strutz, T., Leipnitz, A.: Reversible colour spaces without increased bit depth and their adaptive selection. IEEE Sig. Process. Lett. 22(9), 1269–73 (2015).  https://doi.org/10.1109/LSP.2015.2397034CrossRefGoogle Scholar
  20. 20.
    Sullivan, G., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 674–693 (2012).  https://doi.org/10.1109/TCSVT.2012.2221191CrossRefGoogle Scholar
  21. 21.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Anal. 3, 186–200 (1996).  https://doi.org/10.1006/acha.1996.0015MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-1-4615-0799-4CrossRefGoogle Scholar
  23. 23.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000).  https://doi.org/10.1109/83.855427CrossRefGoogle Scholar
  24. 24.
    Xu, J., Joshi, R., Cohen, R.A.: Overview of the emerging HEVC screen content coding extension. IEEE Trans. Circ. Syst. Video Technol. 26(1), 50–62 (2016).  https://doi.org/10.1109/TCSVT.2015.2478706CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations