Advertisement

Comparison of Selected Fusion Methods from the Abstract and Rank Levels in a System Using Pawlak’s Approach to Coalition Formation

  • Małgorzata Przybyła-KasperekEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In this paper, a decision system that uses dispersed knowledge is considered. In particular, an ensemble of classifiers in which the relations between classifiers are analyzed and coalitions of classifiers that are formed is discussed. In a previous work, the use of Pawlak’s conflict model in order to create such coalitions was proposed. In this paper, four fusion methods are used in this system – two from the abstract level and two from the rank level. The results that were obtained using these four methods were compared and some conclusions are presented in this paper.

Keywords

Decision-making system Ensembles of classifiers Pawlak’s conflict model Fusion method 

References

  1. 1.
    Baarslag, T., et al.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198(Suppl. C), 73–103 (2013). http://www.sciencedirect.com/science/article/pii/S0004370212001105CrossRefGoogle Scholar
  2. 2.
    Barabash, Y.L.: Collective Statistical Decisions in Recognition. Radio i Sviaz, Moscow (1983)Google Scholar
  3. 3.
    Burduk, R.: Classifier fusion with interval-valued weights. Pattern Recogn. Lett. 34(14), 1623–1629 (2013). Innovative Knowledge Based Techniques in Pattern Recognition. http://www.sciencedirect.com/science/article/pii/S0167865513002201CrossRefGoogle Scholar
  4. 4.
    Cabrerizo, F.J., Herrera-Viedma, E., Pedrycz, W.: A method based on pso and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res. 230(3), 624–633 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 942–956 (2005)CrossRefGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)CrossRefGoogle Scholar
  7. 7.
    Ksieniewicz, P., Krawczyk, B., Woźniak, M.: Ensemble of extreme learning machines with trained classifier combination and statistical features for hyperspectral data. Neurocomputing 271(Suppl. C), 28–37 (2018). http://www.sciencedirect.com/science/article/pii/S0925231217312195CrossRefGoogle Scholar
  8. 8.
    Lee, W.L.: An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl. Soft Comput. 13, 3683–3692 (2013)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: On conflicts. Int. J. Man-Mach. Stud. 21(2), 127–134 (1984)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: An inquiry into anatomy of conflicts. Inf. Sci. 109(1–4), 65–78 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Przybyła-Kasperek, M.: Two methods of combining classifiers, which are based on decision templates and theory of evidence, in a dispersed decision-making system. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp. 109–119. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34099-9_7CrossRefGoogle Scholar
  12. 12.
    Przybyła-Kasperek, M.: Methods based on pawlak’s model of conflict analysis - medical applications. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp. 249–262. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60837-2_21CrossRefGoogle Scholar
  13. 13.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system - the use of negotiations during the dynamic generation of a system’s structure. Inf. Sci. 288(Suppl. C), 194–219 (2014). http://www.sciencedirect.com/science/article/pii/S0020025514007324CrossRefGoogle Scholar
  14. 14.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: The strength of coalition in a dispersed decision support system with negotiations. Eur. J. Oper. Res. 252(3), 947–968 (2016). http://www.sciencedirect.com/science/article/pii/S0377221716300285MathSciNetCrossRefGoogle Scholar
  15. 15.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system. Int. J. Gen. Syst. 46, 386–413 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Smirnov, D.V., Muraleedharan, R., Ramachandran, R.P.: A comparison of facial features and fusion methods for emotion recognition. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 574–582. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26561-2_68CrossRefGoogle Scholar
  17. 17.
    Sosnowski, Ł.: Framework of compound object comparators. Intell. Decis. Technol. 9(4), 343–363 (2015)CrossRefGoogle Scholar
  18. 18.
    Stefanowski, J.: An experimental study of methods combining multiple classifiers - diversified both by feature selection and bootstrap sampling. In: Atanassov, T., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information, pp. 337–354. Akademicka Oficyna Wydawnicza EXIT (2005)Google Scholar
  19. 19.
    Szczuka, M., Ślȩzak, D.: Feedforward neural networks for compound signals. Theor. Comput. Sci. 412(42), 5960–5973 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations