Skip to main content
Book cover

Silicene pp 235–254Cite as

Encapsulated Silicene Field-Effect Transistors

Part of the NanoScience and Technology book series (NANO)

Abstract

Besides theoretical studies, experimental investigations on silicene began with the synthesis of silicene on ceramic or metallic catalyst substrates such as ZrB2, Ir and Ag. Among various reported methods, the epitaxial growth of silicene sheet atop Ag(111) has received increasing attention and a derivative approach of using evaporated Ag(111) film as catalyst on a cleavable substrate will be specifically discussed in this Chapter for the ease of following device studies. Despite these research progresses in silicene synthesis, there is a lack of experimental investigation on silicene devices. One of the most key challenges is the material preservation during device fabrication and measurement process. This chapter will summarize recent understanding and progress in air-stability of silicene and viable device fabrication choices, to enable the debut of the first silicene field-effect transistor. A survey will be conducted on experimental probing of electrical properties of silicene via scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and experimental transport measurement on field-effect transistors. These results not only provide experimental feedback to existing theoretical studies, but also encourages further interest in novel device concepts and prospects of silicene and other emerging 2D materials like germanene, stanene and phosphorene.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99964-7_12
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99964-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CrossRef  ADS  Google Scholar 

  2. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)

    CrossRef  Google Scholar 

  3. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011)

    CrossRef  ADS  Google Scholar 

  4. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)

    CrossRef  Google Scholar 

  5. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7(11), 699–712 (2012)

    CrossRef  ADS  Google Scholar 

  6. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014)

    CrossRef  ADS  Google Scholar 

  7. A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D. Akinwande, J.-F. Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014)

    CrossRef  ADS  Google Scholar 

  8. H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang, D. Jena, N. Lu, D. Akinwande, High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446–5452 (2013)

    CrossRef  Google Scholar 

  9. K. Takeda, K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50(20), 14916–14922 (1994)

    CrossRef  ADS  Google Scholar 

  10. E. Durgun, S. Tongay, S. Ciraci, Silicon and III-V compound nanotubes: structural and electronic properties. Phys. Rev. B 72(7), 075420 (2005)

    CrossRef  ADS  Google Scholar 

  11. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007)

    CrossRef  ADS  Google Scholar 

  12. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Band structure of hydrogenated Si nanosheets and nanotubes. J. Phys. Cond. Matter 23(14), 145502 (2011)

    CrossRef  ADS  Google Scholar 

  13. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two- and one-dimensional honeycomb structures of Silicon and Germanium. Phys. Rev. Lett. 102(23), 236804 (2009)

    CrossRef  ADS  Google Scholar 

  14. S. Lebègue, O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79(11), 115409 (2009)

    CrossRef  ADS  Google Scholar 

  15. R. Quhe, R. Fei, Q. Liu, J. Zheng, H. Li, C. Xu, Z. Ni, Y. Wang, D. Yu, Z. Gao, J. Lu, Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2, 853 (2012)

    CrossRef  ADS  Google Scholar 

  16. U. Röthlisberger, W. Andreoni, M. Parrinello, Structure of nanoscale silicon clusters. Phys. Rev. Lett. 72(5), 665–668 (1994)

    CrossRef  ADS  Google Scholar 

  17. E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. van den Broek, M. Houssa, M. Fanciulli, A. Molle, Getting through the nature of silicene: an sp2sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719–16724 (2013)

    CrossRef  Google Scholar 

  18. C.-C. Liu, W. Feng, Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107(7), 076802 (2011)

    CrossRef  ADS  Google Scholar 

  19. Y.D. Nelson, O.O. Kingsley, K.A. Sampson, C.A. Akosa, A. Emmanuel, D.A. Clement, A.B. Abdulhakeem, I. Emmanuel, B.N. Stany, T.O. Joshua, O.O. Anthony, F. Olu Emmanuel, O.U. Josephine, V.W. Umesh, Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. J. Phys. Cond. Matter 22(37), 375502 (2010)

    CrossRef  Google Scholar 

  20. C. Xu, G. Luo, Q. Liu, J. Zheng, Z. Zhang, S. Nagase, Z. Gao, J. Lu, Giant magnetoresistance in silicene nanoribbons. Nanoscale 4(10), 3111–3117 (2012)

    CrossRef  ADS  Google Scholar 

  21. F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Infrared absorbance of silicene and germanene. Appl. Phys. Lett. 100(26), 261906 (2012)

    CrossRef  ADS  Google Scholar 

  22. Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, V.B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: a molecular dynamics study. J. Appl. Phys. 114(3), 033526 (2013)

    CrossRef  ADS  Google Scholar 

  23. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108(24), 245501 (2012)

    CrossRef  ADS  Google Scholar 

  24. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.-J. Gao, Buckled silicene formation on Ir(111). Nano Lett. 13(2), 685–690 (2013)

    CrossRef  ADS  Google Scholar 

  25. C. Leandri, G.L. Lay, B. Aufray, C. Girardeaux, J. Avila, M.E. Dávila, M.C. Asensio, C. Ottaviani, A. Cricenti, Self-aligned silicon quantum wires on Ag(110). Surf. Sci. 574(1), L9–L15 (2005)

    CrossRef  ADS  Google Scholar 

  26. C. Léandri, H. Oughaddou, B. Aufray, J.M. Gay, G. Le Lay, A. Ranguis, Y. Garreau, Growth of Si nanostructures on Ag(001). Surf. Sci. 601(1), 262–267 (2007)

    CrossRef  ADS  Google Scholar 

  27. A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene—new candidate for electronics. Surf. Sci. Rep, 67(1), 1–18 (2012)

    CrossRef  ADS  Google Scholar 

  28. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96(18), 183102 (2010)

    CrossRef  ADS  Google Scholar 

  29. P. De Padova, P. Perfetti, B. Olivieri, C. Quaresima, C. Ottaviani, G.L. Lay, 1D graphene-like silicon systems: silicene nano-ribbons. J. Phys. Condens. Matter 24(22), 223001 (2012)

    CrossRef  ADS  Google Scholar 

  30. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12(7), 3507–3511 (2012)

    CrossRef  ADS  Google Scholar 

  31. C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Structure of silicene grown on Ag(111). Appl. Phys. Exp. 5(4), 045802 (2012)

    CrossRef  ADS  Google Scholar 

  32. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

    CrossRef  ADS  Google Scholar 

  33. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Local electronic properties of corrugated silicene phases. Adv. Mater. 24(37), 5088–5093 (2012)

    CrossRef  Google Scholar 

  34. A. Molle, C. Grazianetti, D. Chiappe, E. Cinquanta, E. Cianci, G. Tallarida, M. Fanciulli, Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater. 23(35), 4340–4344 (2013)

    CrossRef  Google Scholar 

  35. P. De Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, G. Le Lay, Multilayer silicene nanoribbons. Nano Lett. 12(11), 5500–5503 (2012)

    CrossRef  ADS  Google Scholar 

  36. B. Feng, H. Li, C.-C. Liu, T.-N. Shao, P. Cheng, Y. Yao, S. Meng, L. Chen, K. Wu, Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 7(10), 9049–9054 (2013)

    CrossRef  Google Scholar 

  37. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10(10), 227–231 (2015)

    CrossRef  ADS  Google Scholar 

  38. L. Li, S.-Z. Lu, J. Pan, Z. Qin, Y.-Q. Wang, Y. Wang, G.-Y. Cao, S. Du, H.-J. Gao, Buckled germanene formation on Pt(111). Adv. Mater. 26(28), 4820–4824 (2014)

    CrossRef  Google Scholar 

  39. Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 111(13), 136804 (2013)

    CrossRef  ADS  Google Scholar 

  40. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    CrossRef  Google Scholar 

  41. A. Acun, B. Poelsema, H.J.W. Zandvliet, R. van Gastel, The instability of silicene on Ag(111). Appl. Phys. Lett. 103(26) (2013)

    CrossRef  ADS  Google Scholar 

  42. P. Moras, T.O. Mentes, P.M. Sheverdyaeva, A. Locatelli, C. Carbone, Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys. Condens. Matter 26(18), 185001 (2014)

    CrossRef  Google Scholar 

  43. A.J. Mannix, B. Kiraly, B.L. Fisher, M.C. Hersam, N.P. Guisinger, Silicon growth at the two-dimensional limit on Ag(111). ACS Nano 8(7), 7538–7547 (2014)

    CrossRef  Google Scholar 

  44. C. Grazianetti, D. Chiappe, E. Cinquanta, M. Fanciulli, A. Molle, Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(111). J. Phys. Cond. Matter 27(25), 255005 (2015)

    CrossRef  ADS  Google Scholar 

  45. P. Paola De, O. Carlo, Q. Claudio, O. Bruno, I. Patrizia, S. Eric, A. Thierry, Q. Lucia, R. Claudia, V. Alessandro, M.-M. Maurizio, G. Amanda, P. Barbara, L. Guy Le, 24 h stability of thick multilayer silicene in air. 2D Mater, 1(2), 021003 (2014)

    Google Scholar 

  46. T. Shirai, T. Shirasawa, T. Hirahara, N. Fukui, T. Takahashi, S. Hasegawa, Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface. Phys. Rev. B 89(24), 241403 (2014)

    CrossRef  ADS  Google Scholar 

  47. E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, A. Stesmans, Vibrational properties of silicene and germanene. Nano Res. 6(1), 19–28 (2013)

    CrossRef  Google Scholar 

  48. E. Scalise, E. Cinquanta, M. Houssa, B. van den Broek, D. Chiappe, C. Grazianetti, G. Pourtois, B. Ealet, A. Molle, M. Fanciulli, V.V. Afanas’ev, A. Stesmans, Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 291(0), 113–117 (2014)

    CrossRef  ADS  Google Scholar 

  49. L. Tao, J. Lee, H. Chou, M. Holt, R.S. Ruoff, D. Akinwande, Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) Films. ACS Nano 6(3), 2319–2325 (2012)

    CrossRef  Google Scholar 

  50. J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 13(4), 1462–1467 (2013)

    CrossRef  ADS  Google Scholar 

  51. J. Gao, J. Zhao, Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci. Rep. 2, 861 (2012)

    CrossRef  ADS  Google Scholar 

  52. Z.-X. Guo, S. Furuya, J.-I. Iwata, A. Oshiyama, Absence and presence of Dirac electrons in silicene on substrates. Phys. Rev. B 87(23), 235435 (2013)

    CrossRef  ADS  Google Scholar 

  53. C.-L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110(7), 076801 (2013)

    CrossRef  ADS  Google Scholar 

  54. B. Huang, H.J. Xiang, S.-H. Wei, Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 111(14), 145502 (2013)

    CrossRef  ADS  Google Scholar 

  55. V.O. Özçelik, S. Ciraci, Local reconstructions of silicene induced by adatoms. J. Phys. Chem. C 117(49), 26305–26315 (2013)

    CrossRef  Google Scholar 

  56. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107-3 (2009)

    CrossRef  ADS  Google Scholar 

  57. K.N. Parrish, D. Akinwande, An exactly solvable model for the graphene transistor in the quantum capacitance limit. Appl. Phys. Lett. 101(5), 053501 (2012)

    CrossRef  ADS  Google Scholar 

  58. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2011)

    CrossRef  ADS  Google Scholar 

  59. X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno, M.B. Nardelli, K.W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013)

    CrossRef  ADS  Google Scholar 

  60. R. Wang, X. Pi, Z. Ni, Y. Liu, S. Lin, M. Xu, D. Yang, Silicene oxides: formation, structures and electronic properties. Sci. Rep. 3, 3507 (2013)

    CrossRef  ADS  Google Scholar 

  61. P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, G. Le Lay, Evidence of Dirac fermions in multilayer silicene. Appl. Phys. Lett. 102(16), 163106 (2013)

    CrossRef  ADS  Google Scholar 

  62. S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan, G. Merino, A. Rubio, Electronic structure of silicene on Ag(111): strong hybridization effects. Phys. Rev. B 88(3), 035432 (2013)

    CrossRef  ADS  Google Scholar 

  63. D. Tsoutsou, E. Xenogiannopoulou, E. Golias, P. Tsipas, A. Dimoulas, Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111). Appl. Phys. Lett. 103(23), 231604 (2013)

    CrossRef  ADS  Google Scholar 

  64. N.W. Johnson, P. Vogt, A. Resta, P. De Padova, I. Perez, D. Muir, E.Z. Kurmaev, G. Le Lay, A. Moewes, The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 24(33), 5253–5259 (2014)

    CrossRef  Google Scholar 

  65. S.K. Mahatha, P. Moras, V. Bellini, P.M. Sheverdyaeva, C. Struzzi, L. Petaccia, C. Carbone, Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89(20), 201416 (2014)

    CrossRef  ADS  Google Scholar 

  66. A.W. Tsen, L. Brown, M.P. Levendorf, F. Ghahari, P.Y. Huang, R.W. Havener, C.S. Ruiz-Vargas, D.A. Muller, P. Kim, J. Park, Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336(6085), 1143–1146 (2012)

    CrossRef  ADS  Google Scholar 

  67. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Electrically tunable band gap in silicene. Phys. Rev. B 85(7), 075423 (2012)

    CrossRef  ADS  Google Scholar 

  68. Y. Liang, V. Wang, H. Mizuseki, Y. Kawazoe, Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. J. Phys. Cond. Matter 24(45), 455302 (2012)

    CrossRef  Google Scholar 

  69. J.-N. Ding, J.-X. Wang, N.-Y. Yuan, B. Kan, X.-S. Chen, Electronic band transformation from indirect gap to direct gap in Si–H compound. Chin. Phys. B 19(7), 077103 (2010)

    CrossRef  ADS  Google Scholar 

  70. H.-S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Camberidge, 2011)

    Google Scholar 

  71. P. Pflugradt, L. Matthes, F. Bechstedt, Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 89(3), 035403 (2014)

    CrossRef  ADS  Google Scholar 

  72. F. Schwierz, Graphene and beyond: two-dimensional materials for transistor applications. in Proceedings of SPIE (2015), pp. 94670 W-94670 W-9

    Google Scholar 

  73. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)

    CrossRef  ADS  Google Scholar 

  74. M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44(11), 3691–3718 (2015)

    CrossRef  Google Scholar 

  75. C. Lian, J. Ni, The effects of thermal and electric fields on the electronic structures of silicene. Phys. Chem. Chem. Phys. 17(20), 13366–13373 (2015)

    CrossRef  Google Scholar 

  76. Z. Wen, C. Li, D. Wu, A. Li, N. Ming, Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12(7), 617–621 (2013)

    CrossRef  ADS  Google Scholar 

  77. H. Lu, A. Lipatov, S. Ryu, D.J. Kim, H. Lee, M.Y. Zhuravlev, C.B. Eom, E.Y. Tsymbal, A. Sinitskii, A. Gruverman, Ferroelectric tunnel junctions with graphene electrodes. Nat. Commun. 5, 5518 (2014)

    CrossRef  ADS  Google Scholar 

  78. G. Le Lay, E. Salomon, T. Angot, M. Eugenia Dávila, Increasing the lego of 2D electronics materials: silicene and germanene, graphene’s new synthetic cousins, in Proceeingds of SPIE (2015), pp. 94670U-94670U-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deji Akinwande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Tao, L., Cinquanta, E., Grazianetti, C., Molle, A., Akinwande, D. (2018). Encapsulated Silicene Field-Effect Transistors. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_12

Download citation