Skip to main content
Book cover

Silicene pp 197–209Cite as

Synthesis of Silicene on Alternative Substrates

  • Chapter
  • First Online:
  • 777 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Silicene has so far been successfully grown on metallic substrates, like Ag(111), ZrB2(0001) and Ir(111) surfaces. However, the characterization of its electronic structure is hampered by the metallic substrate. In addition, potential applications of silicene in nanoelectronic devices will require its growth/integration with semiconducting or insulating substrates. In this chapter, we review recent theoretical works about the interaction of silicene with several non-metallic templates, distinguishing between the weak van der Waals like interaction of silicene with e.g. AlN or layered metal (di)chalcogenides, and the stronger covalent bonding between silicene and e.g. ZnS surfaces. Recent experimental results on the possible growth of silicene on MoS2 are also highlighted and compared to the theoretical predictions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  2. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 12, 3507 (2012)

    Article  ADS  Google Scholar 

  3. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Adv. Mat. 24, 5088 (2012)

    Article  Google Scholar 

  4. H. Enriquez, S. Vizzini, A. Kara, B. Lalmi, H. Oughaddou, J. Phys, Condens. Matter 24, 314211 (2012)

    Article  ADS  Google Scholar 

  5. D. Tsoutsou, E. Xenogiannopoulou, E. Golias, P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 103, 231604 (2013)

    Article  ADS  Google Scholar 

  6. P. Moras, T.O. Mentes, P.M. Sheverdyaeva, A. Locatelli, C. Carbone, J. Phys.: Condens. Matter 26, 185001 (2014)

    Google Scholar 

  7. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Takamura, Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  8. C.C. Lee, A. Fleurence, Y. Yamada-Takamura, T. Ozaki, R. Friedlein, Phys. Rev. B 90, 075422 (2014)

    Article  ADS  Google Scholar 

  9. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, M.J. Gao, Nano Lett. 13, 685 (2013)

    Article  ADS  Google Scholar 

  10. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotech. 10, 227 (2015)

    Article  ADS  Google Scholar 

  11. M. Houssa, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 97, 112106 (2010)

    Article  ADS  Google Scholar 

  12. M. Houssa, G. Pourtois, M.M. Heyns, V.V. Afanas’ev, A. Stesmans, J. Electrochem. Soc. 158, H107 (2011)

    Article  Google Scholar 

  13. Y. Ding, Y. Wang, Appl. Phys. Lett. 103, 043114 (2013)

    Article  ADS  Google Scholar 

  14. E. Scalise, M. Houssa, E. Cinquanta, C. Grazianetti, B. van den Broek, G. Pourtois, A. Stesmans, M. Fanciulli, A. Molle, 2D Mater. 1, 011010 (2014)

    Article  Google Scholar 

  15. L.Y. Li, M.W. Zhao, J. Phys. Chem. C 118, 19129 (2014)

    Article  Google Scholar 

  16. D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. van den Broek, M. Fanciulli, M. Houssa, A. Molle, Adv. Mater. 26, 2096 (2014)

    Article  Google Scholar 

  17. J.J. Zhu, U. Schwingenschlögl, A.C.S. Appl, Mat. Interf. 6, 11675 (2014)

    Article  Google Scholar 

  18. L. Linyang, W. Xiaopeng, Z. Xiaoyang, Z. Mingwen, Phys. Lett. A 377, 2628 (2013)

    Article  ADS  Google Scholar 

  19. S. Kokott, P. Pflugradt, L. Matthes, F. Bechstedt, J. Phys.: Condens. Matter 26, 185002 (2014)

    Google Scholar 

  20. M. Badylevich, S. Shamuilia, V.V. Afanas’ev, A. Stesmans, Y.G. Fedorenko, C. Zhao, J. Appl. Phys. 104, 093713 (2008)

    Article  ADS  Google Scholar 

  21. Y.-N. Xu, W.Y. Ching, Phys. Rev. B 48, 4335 (1993)

    Article  ADS  Google Scholar 

  22. C.L. Freeman, F. Claeyssens, N.L. Allan, J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006)

    Article  ADS  Google Scholar 

  23. P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, S.A. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, A. Dimoulas, Appl. Phys. Lett. 103, 251605 (2013)

    Article  ADS  Google Scholar 

  24. K.K. Kam, B. Parkinson, J. Chem. Phys. 86, 463 (1982)

    Article  Google Scholar 

  25. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinx, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  26. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  27. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.-S. Kang, J. Baik, H.J. Shin, S.C. Hong, Phys. Rev. B 84, 045409 (2011)

    Article  ADS  Google Scholar 

  28. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I. V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, T. Duesberg, G.S. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)

    Google Scholar 

  29. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozovand, A.K. Geim, PNAS 102, 10451 (2005)

    Article  ADS  Google Scholar 

  30. S. Lebegue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)

    Article  ADS  Google Scholar 

  31. T. Li, G. Galli, J. Phys. Chem. C 111, 16192 (2007)

    Article  Google Scholar 

  32. C. Ataca, H. Sahin, E. Akturk, S. Ciraci, J. Phys. Chem. C 115, 3934 (2011)

    Article  Google Scholar 

  33. D.C. Langreth, M. Dion, H. Rydberg, E. Schroeder, P. Hyldgaard, B.I. Lundqvis, Int. J. Quant. Chem. 101, 599–610 (2005)

    Article  Google Scholar 

  34. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804(1)–236804(4) (2009)

    Google Scholar 

  35. J.A. Wilsonand, A.D. Yoffe, Adv. Phys. 18, 193–335 (1969)

    Google Scholar 

  36. T. Boker et al., Phys. Rev. B 64, 235305(1)–235305(11) (2001)

    Google Scholar 

  37. E. Cinquanta et al., J. Phys. Chem. C 117, 16719 (2013)

    Article  Google Scholar 

  38. L.C. Lew Yan Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Appl. Phys. Lett. 97, 163114 (2010)

    Article  ADS  Google Scholar 

  39. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011)

    Article  ADS  Google Scholar 

  40. R. Quhe, R. Fei, Q. Liu, J. Zheng, H. Li, C. Xu, Z. Ni, Y. Wang, D. Yu, Z. Gao, J. Lu, Sci. Rep. 2, 853 (2012)

    Article  ADS  Google Scholar 

  41. Y. Ding, Y. Wang, Appl. Phys. Lett. 100, 083102 (2012)

    Article  ADS  Google Scholar 

  42. B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Surf. Sci. 291, 104 (2014)

    Article  ADS  Google Scholar 

  43. T.P. Kaloni, N. Singh, U. Schwingenschlögl, Phys. Rev. B 89, 035409 (2014)

    Article  ADS  Google Scholar 

  44. M. Houssa, B. van den Broek, E. Scalise, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Phys. Chem. Chem. Phys. 15, 3702 (2013)

    Article  Google Scholar 

  45. S.S. Li, C.W. Zhang, S.S. Yan, S.J. Hu, W.X. Ji, P.J. Wang, P. Li, J. Phys.: Condens. Matter 26, 395003 (2014)

    Google Scholar 

  46. M.J. Weber (ed.), Handbook of Laser Science and Technology (CRC Press, Cleveland, 1986)

    Google Scholar 

  47. J.E. Northrup, J. Neugebauer, Phys. Rev. B 53, R10477 (1996)

    Article  ADS  Google Scholar 

  48. A. Filippetti, V. Fiorentini, G. Cappellini, A. Bosin, Phys. Rev. B 59, 8026 (1999)

    Article  ADS  Google Scholar 

  49. X. Zhang, H. Zhang, T. He, M. Zhao, J. Appl. Phys. 108, 064317 (2010)

    Article  ADS  Google Scholar 

  50. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, N.M. Harrison, Phys. Rev. Lett. 86, 3811 (2001)

    Article  ADS  Google Scholar 

  51. B. Meyer, D. Marx, Phys. Rev. B 67, 035403 (2003)

    Article  ADS  Google Scholar 

  52. M. Houssa, B. van den Broek, E. Scalise, G. Pourtois, V.V. Afanas’ev, A. Stesmans, ECS Trans. 53, 51 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the European Project 2D-NANOLATTICES, within the Future and Emerging Technologies (FET) program of the European Commission, under the FET-grant number 270749, as well as the KU Leuven Research Funds, project GOA/13/011. We are grateful to A. Molle (MDM Laboratory), A. Dimoulas (NCSR Demokritos), G. Pourtois (imec), B. van den Broek and K. Iordanidou, (KU Leuven) for their valuable contributions to this work and for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Houssa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houssa, M., Scalise, E., Afanas’ev, V.V., Stesmans, A. (2018). Synthesis of Silicene on Alternative Substrates. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_10

Download citation

Publish with us

Policies and ethics