Skip to main content

A Vision on Organosilicon Chemistry and Silicene

  • Chapter
  • First Online:
Book cover Silicene

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Replacement of carbon atoms from aromatic molecules and their two-dimensional extended analogues (graphene) have been predicted to have interesting structural diversity and tunable electronic properties. Recent progress in the experimental realization of such systems is discussed along with a conceptual understanding of the structural properties of planar organosilicon compounds and silicene. Psuedo Jahn-Teller (PJT) distortion is shown to contribute to the buckling distortions in silicene which make them excellent materials for band-gap tuning through hydrogenation. Chemical doping of silicene by cations is suggested to be a strategy to suppress buckling of silicene and regain its perfect planar two-dimensional silicon framework. TERS spectroscopy is proposed as a tool to probe the presence or absence of buckling distortions in silicene and cation doped silicene respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sainsbury, Aromatic Chemistry (Oxford Science Publications, Oxford, 1992)

    Google Scholar 

  2. E. Hückel, Z. Physik 72, 310 (1931)

    Article  ADS  Google Scholar 

  3. E. Hückel, Z. Physik 70, 204 (1931)

    Article  ADS  Google Scholar 

  4. E. Hückel, Z. Physik 76, 628 (1932)

    Article  ADS  Google Scholar 

  5. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  6. K. Wakita, N. Tokitoh, R. Okazaki, S. Nagase, Angew. Chem. Int. Ed. 39, 634 (2000)

    Article  Google Scholar 

  7. N. Tokitoh, K. Wakita, R. Okazaki, S. Nagase, P. von Ragué Schleyer, H. Jiao, J. Am. Chem. Soc. 119, 6951 (1997)

    Article  Google Scholar 

  8. P. Jutzi, M. Meyer, H.V.R. Dias, P.P. Power, J. Am. Chem. Soc. 112, 4841 (1990)

    Article  Google Scholar 

  9. N. Tokitoh, A. Shinohara, T. Matsumoto, T. Sasamori, N. Takeda, Y. Furukawa, Organometallics 26, 4048 (2007)

    Article  Google Scholar 

  10. Y. Tanabe, Y. Mizuhata, N. Tokitoh, Organometallics 29, 721 (2010)

    Article  Google Scholar 

  11. K. Abersfelder, A.J.P. White, H.S. Rzepa, D. Scheschkewitz, Science 327, 564 (2010)

    Article  ADS  Google Scholar 

  12. S. Nagase, H. Teramae, T. Kudo, J. Chem. Phys. 86, 4513 (1987)

    Article  ADS  Google Scholar 

  13. K.K. Baldridge, O. Uzan, J.M.L. Martin, Organometallics 19, 1477 (2000)

    Article  Google Scholar 

  14. S. Nagase, Bull. Chem. Soc. Jpn 87, 167 (2014)

    Article  Google Scholar 

  15. W.D. Hobey, J. Chem. Phys. 43, 2187 (1965)

    Article  ADS  Google Scholar 

  16. L. Blancafort, M.J. Bearpark, M.A. Robb, Mol. Phys. 104, 2007 (2006)

    Article  ADS  Google Scholar 

  17. I.B. Bersuker, Chem. Rev. 113, 1351 (2013)

    Article  Google Scholar 

  18. D. Jose, A. Datta, J. Phys. Chem. C 116, 24639 (2012)

    Article  Google Scholar 

  19. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009)

    Article  ADS  Google Scholar 

  20. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Google Scholar 

  21. I. Bersuker, The Jahn-Teller Effect (Cambridge University Press, 2006)

    Google Scholar 

  22. P. Garcia-Fernandez, I.B. Bersuker, J.E. Boggs, J. Chem. Phys. 124, 044321 (2006)

    Article  ADS  Google Scholar 

  23. H.J. Worner, F. Merkt, J. Chem. Phys. 127, 034303 (2007)

    Article  ADS  Google Scholar 

  24. Y. Liu, S. Kumari, M. Roudjane, S. Li, D.-S. Yang, J. Chem. Phys. 136, 134310 (2012)

    Article  ADS  Google Scholar 

  25. K. Pokhodnya, C. Olson, X. Dai, D.L. Schulz, P. Boudjouk, A.P. Sergeeva, A.I. Boldyrev, J. Chem. Phys. 134, 014105 (2011)

    Article  ADS  Google Scholar 

  26. A.P. Sergeeva, A.I. Boldyrev, Organometallics 29, 3951 (2010)

    Article  Google Scholar 

  27. T.R. Galeev, A.I. Boldyrev, Phys. Chem. Chem. Phys. 13, 20549 (2011)

    Article  Google Scholar 

  28. M. Houssa, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 97, 112106 (2010)

    Article  ADS  Google Scholar 

  29. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  30. D. Jose, A. Datta, Phys. Chem. Chem. Phys. 13, 7304 (2011)

    Article  Google Scholar 

  31. Z. Slanina, Chem. Phys. Lett. 161, 175 (1989)

    Article  ADS  Google Scholar 

  32. C. Gerdes, T. Müller, Angew. Chem. Int. Ed. 49, 4860 (2010)

    Article  Google Scholar 

  33. T. Szilvási, T. Veszprémi, Organometallics 31, 3207 (2012)

    Article  Google Scholar 

  34. R.G. Pearson, Proc. Natl. Acad. Sci. 72, 2104 (1975)

    Article  ADS  Google Scholar 

  35. J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303 (1997)

    Article  Google Scholar 

  36. D.A. Dougherty, Science 271, 163 (1996)

    Article  ADS  Google Scholar 

  37. C.A. Hunter, C.M.R. Low, C. Rotger, J.G. Vinter, C. Zonta, Proc. Natl. Acad. Sci. 99, 4873 (2002)

    Article  ADS  Google Scholar 

  38. S.E. Wheeler, K.N. Houk, J. Am. Chem. Soc. 131, 3126 (2009)

    Article  Google Scholar 

  39. S. Mecozzi, A.P. West, D.A. Dougherty, J. Am. Chem. Soc. 118, 2307 (1996)

    Article  Google Scholar 

  40. S. Tsuzuki, M. Yoshida, T. Uchimaru, M. Mikami, J. Phys. Chem. A 105, 769 (2001)

    Article  Google Scholar 

  41. A.D. Zdetsis, J. Chem. Phys. 127, 214306 (2007)

    Article  ADS  Google Scholar 

  42. S.A. Abraham, D. Jose, A. Datta, ChemPhysChem 13, 695 (2012)

    Article  Google Scholar 

  43. G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127, 2339 (2005)

    Article  Google Scholar 

  44. J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

    Article  Google Scholar 

  45. O. Marra, C. William, Handbook of Semiconductor Silicon Technology (1990)

    Google Scholar 

  46. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  47. J. Huang, M. Kertesz, J. Chem. Phys. 122, 234707 (2005)

    Article  ADS  Google Scholar 

  48. A. Datta, S. Mohakud, S.K. Pati, J. Mater. Chem. 17, 1933 (2007)

    Article  Google Scholar 

  49. A. Datta, S. Mohakud, S.K. Pati, J. Chem. Phys. 126, 144710 (2007)

    Article  ADS  Google Scholar 

  50. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  51. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  52. M. Hu, X. Zhang, D. Poulikakos, Phys. Rev. B 87, 195417 (2013)

    Article  ADS  Google Scholar 

  53. J. Lan, D. Cheng, D. Cao, W. Wang, J. Phys. Chem. C 112, 5598 (2008)

    Article  Google Scholar 

  54. J.P. Lowe, K.A. Peterson, Quantum Chemistry, 3rd edn. (Elsevier, USA, 2006)

    Google Scholar 

  55. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  56. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  ADS  Google Scholar 

  57. E. Scalise, M. Houssa, G. Pourtois, B. Broek, V. Afanas’ev, A. Stesmans, Nano Res. 6, 19 (2013)

    Google Scholar 

  58. E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B.V.D. Broek, M. Houssa, M. Fanciulli, A. Molle, arXiv:1212.5422 [cond-mat.mes-hall]

  59. D. Jose, A. Nijamudheen, A. Datta, Phys. Chem. Chem. Phys. 15, 8700 (2013)

    Article  Google Scholar 

  60. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  ADS  Google Scholar 

  61. L.E. Roy, P.J. Hay, R.L. Martin, J. Chem. Theory Comput. 4, 1029 (2008)

    Article  Google Scholar 

  62. A.W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K.F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 208, 111 (1993)

    Article  ADS  Google Scholar 

  63. D. Feller, J. Comput. Chem. 17, 1571 (1996)

    Article  Google Scholar 

  64. K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, J. Chem. Inf. Model. 47, 1045 (2007)

    Article  Google Scholar 

  65. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  66. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957 (1999)

    Article  Google Scholar 

  67. S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev. 37, 1012 (2008)

    Article  Google Scholar 

  68. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318, 131 (2000)

    Article  ADS  Google Scholar 

  69. E. Bailo, V. Deckert, Chem. Soc. Rev. 37, 921 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to long-term discussions in the area of molecular vibrations in silicon systems to Alexander Boldyrev, Issac B. Bersuker and G. Narahari Sastry. Funding from INSA, DST, BRNS is duly acknowledged. Computational resources of the IACS-CRAY supercomputer for many of the calculations is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jose, D., Chowdhury, C., Datta, A. (2018). A Vision on Organosilicon Chemistry and Silicene. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_1

Download citation

Publish with us

Policies and ethics