Skip to main content

Targeted End-to-End Knowledge Graph Decomposition

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11105))

Included in the following conference series:

Abstract

Knowledge graphs are networks with annotated nodes and edges, representing different relations between the network nodes. Learning from such graphs is becoming increasingly important as numerous real-life systems can be represented as knowledge graphs, where properties of selected types of nodes or edges are learned. This paper presents a fully autonomous approach to targeted knowledge graph decomposition, advancing the state-of-the-art HINMINE network decomposition methodology. In this methodology, weighted edges between the nodes of a selected node type are constructed via different typed triplets, each connecting two nodes of the same type through an intermediary node of a different type. The final product of such a decomposition is a weighted homogeneous network of the selected node type. HINMINE is advanced by reformulating the supervised network decomposition problem as a combinatorial optimization problem, and by solving it by a differential evolution approach. The proposed approach is tested on node classification tasks on two real-life knowledge graphs. The experimental results demonstrate that the proposed end-to-end learning approach is much faster and as accurate as the exhaustive search approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The machine used for evaluation was an of-the-shelf Lenovo y510p laptop with an i7 Intel processor (8 cores) and 4 GB of RAM.

  2. 2.

    The feature matrix is not memory efficient, as it uses \(\mathcal {O}(N^{2})\) space, yet optimization of this part of the procedure is out of the scope of this study.

References

  1. Burt, R., Minor, M.: Applied Network Analysis: A Methodological Introduction. Sage Publications, Beverly Hills (1983)

    Google Scholar 

  2. Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  3. Consortium: Gene Ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

    Google Scholar 

  4. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS) (2016)

    Google Scholar 

  5. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  6. Kralj, J., Robnik-Šikonja, M., Lavrač, N.: HINMINE: heterogeneous information network mining with information retrieval heuristics. J. Intell. Inf. Syst., 1–33 (2017)

    Google Scholar 

  7. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Article  Google Scholar 

  8. de Sousa, C.A.R., Rezende, S.O., Batista, G.E.A.P.A.: Influence of graph construction on semi-supervised learning. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 160–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_11

    Chapter  Google Scholar 

  9. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  10. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  11. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI, vol. 14, pp. 1112–1119 (2014)

    Google Scholar 

  12. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. (2018)

    Google Scholar 

  13. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1067–1077 (2015)

    Google Scholar 

  15. Grčar, M., Trdin, N., Lavrač, N.: A methodology for mining document-enriched heterogeneous information networks. Comput. J. 56(3), 321–335 (2013)

    Article  Google Scholar 

  16. Kralj, J., Valmarska, A., Robnik-Šikonja, M., Lavrač, N.: Mining text enriched heterogeneous citation networks. In: Cao, T., et al. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 672–683. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18038-0_52

    Chapter  Google Scholar 

  17. Žitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14), i190–i198 (2017)

    Article  Google Scholar 

  18. Fleetwood, K.: An introduction to differential evolution. In: Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia, pp. 785–791 (2004)

    Google Scholar 

  19. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31306-0

  20. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  21. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  22. Jones, E., Oliphant, T., Peterson, P.: SciPy: Open Source Scientific Tools for Python (2014)

    Google Scholar 

  23. Škrlj, B., Kralj, J., Vavpetič, A., Lavrač, N.: Community-based semantic subgroup discovery. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2017. LNCS (LNAI), vol. 10785, pp. 182–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78680-3_13

    Chapter  Google Scholar 

  24. Orchard, S., et al.: The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42(Database issue), pp. D358–D363 (2014)

    Google Scholar 

  25. Marchler-Bauer, A., et al.: CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43(D1), D222–D226 (2014)

    Article  Google Scholar 

  26. Szklarczyk, D., et al.: String v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1), D447–D452 (2014)

    Article  Google Scholar 

  27. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.: The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6), 845 (2015)

    Article  Google Scholar 

  28. Finn, R.D., et al.: Interpro in 2017beyond protein family and domain annotations. Nucleic Acids Res. 45(D1), D190–D199 (2016)

    Google Scholar 

  29. Lee, J., Konc, J., Janežič, D., Brooks, B.R.: Global organization of a binding site network gives insight into evolution and structure-function relationships of proteins. Sci. Rep. 7(1), 11652 (2017)

    Article  Google Scholar 

  30. Škrlj, B., Kunej, T., Konc, J.: Insights from ion binding site network analysis into evolution and functions of proteins. Mol. Inform. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaž Škrlj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Škrlj, B., Kralj, J., Lavrač, N. (2018). Targeted End-to-End Knowledge Graph Decomposition. In: Riguzzi, F., Bellodi, E., Zese, R. (eds) Inductive Logic Programming. ILP 2018. Lecture Notes in Computer Science(), vol 11105. Springer, Cham. https://doi.org/10.1007/978-3-319-99960-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99960-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99959-3

  • Online ISBN: 978-3-319-99960-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics