Machine Learning for Inductive Theorem Proving
- 3 Citations
- 1 Mentions
- 538 Downloads
Abstract
Over the past few years, machine learning has been successfully combined with automated theorem provers to prove conjectures from proof assistants. However, such approaches do not usually focus on inductive proofs. In this work, we explore a combination of machine learning, a simple Boyer-Moore model and ATPs as a means of improving the automation of inductive proofs in the proof assistant HOL Light. We evaluate the framework using a number of inductive proof corpora. In each case, our approach achieves a higher success rate than running ATPs or the Boyer-Moore tool individually.
Keywords
Induction Lemma selection Theorem proving Machine learningNotes
Acknowledgements
This research was supported by EPSRC grants: ProofPeer: Collaborative Theorem Proving EP/L011794/1 and The Integration and Interaction of Multiple Mathematical Reasoning Processes EP/N014758/1. It was also supported by the China Scholarship Council (CSC).
References
- 1.Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-07964-5CrossRefzbMATHGoogle Scholar
- 2.Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason. 9(1), 101–148 (2016)MathSciNetGoogle Scholar
- 3.Boulton, R.: Boyer-Moore automation for the HOL system. In: Higher Order Logic Theorem Proving and Its Applications, pp. 133–142. Elsevier (1993)Google Scholar
- 4.Boyer, R., Moore, J.: A Computational Logic. ACM Monograph Series. Academic Press, Cambridge (1979)zbMATHGoogle Scholar
- 5.Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)CrossRefGoogle Scholar
- 6.Bundy, A.: The automation of proof by mathematical induction. Technical report (1999)Google Scholar
- 7.Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: HipSpec: automating inductive proofs of program properties. In: ATx/WInG@ IJCAR, pp. 16–25 (2012)Google Scholar
- 8.Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_27CrossRefGoogle Scholar
- 9.Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_10CrossRefGoogle Scholar
- 10.de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
- 11.Dixon, L., Fleuriot, J.: IsaPlanner: a prototype proof planner in Isabelle. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45085-6_22CrossRefGoogle Scholar
- 12.Dixon, L., Johansson, M.: IsaPlanner 2: a proof planner in Isabelle. DReaM Technical report (System description) (2007)Google Scholar
- 13.Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4 tactics. In: 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21, vol. 46, pp. 125–143 (2017)Google Scholar
- 14.Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove with tactics. CoRR abs/1804.00596 (2018). http://arxiv.org/abs/1804.00596
- 15.Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814CrossRefGoogle Scholar
- 16.Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_97CrossRefGoogle Scholar
- 17.Heras, J., Komendantskaya, E.: ACL2(ml): machine-learning for ACL2. arXiv preprint arXiv:1404.3034 (2014)
- 18.Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recognition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_27CrossRefzbMATHGoogle Scholar
- 19.Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reason. 47(3), 251–289 (2011)MathSciNetCrossRefGoogle Scholar
- 20.Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with flyspeck. J. Autom. Reason. 53, 1–41 (2014)MathSciNetCrossRefGoogle Scholar
- 21.Kaliszyk, C., Urban, J.: HoL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)CrossRefGoogle Scholar
- 22.Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An Approach. Advances in Formal Methods. Springer, Heidelberg (2000). https://doi.org/10.1007/978-1-4757-3188-0CrossRefGoogle Scholar
- 23.Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
- 24.Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_6CrossRefGoogle Scholar
- 25.Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Log. 7(1), 41–57 (2009)MathSciNetCrossRefGoogle Scholar
- 26.Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higherorder Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9CrossRefzbMATHGoogle Scholar
- 27.Papapanagiotou, P., Fleuriot, J.: The Boyer-Moore waterfall model revisited (2011)Google Scholar
- 28.Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: IWIL-2010, vol. 1 (2010)Google Scholar
- 29.Schulz, S.: E-A Brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)zbMATHGoogle Scholar
- 30.Scott, P.: Ordered geometry in Hilbert’s Grundlagen der Geometrie. Ph.D. thesis, The University of Edinburgh (2015)Google Scholar
- 31.Urban, J.: BliStr: the blind strategymaker. arXiv preprint arXiv:1301.2683 (2013)