Advertisement

Open image in new window: A Linear Algebra Textbook System

  • Xiaoyu Chen
  • Haotian Shuai
  • Dongming Wang
  • Jing Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11110)

Abstract

Mathematical textbooks play a key role in disseminating systematized mathematical knowledge of study. Most textbooks are published in printed or online electronic format without machine-understandable semantics. In this paper we present an intelligent system for managing linear algebra knowledge in the form of textbook with open access to users. Fine-grained data schemas are designed to represent structural semantics of knowledge contents and implemented by using a graph database with an interface of authoring and browsing knowledge contents and structures. A vector-based retrieving method is implemented to rank knowledge objects with respect to query. We report the results of our investigations on semantic representation of mathematical knowledge with experimental implementations for the development of such textbooks.

Keywords

Intelligent textbook Knowledge retrieval Mathematical knowledge management Semantic representation 

Notes

Acknowledgements

This work was supported by NSFC (61702025 and 11771034), SKLSDE-2017ZX-11, Special Fund for Guangxi Bagui Scholar Project, and Scientific Research Foundation of the Education Department of Guangxi Zhuang Autonomous Region (2017KY0173).

References

  1. 1.
    Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 261–279. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20615-8_17CrossRefGoogle Scholar
  2. 2.
    Chaudhri, V., et al.: Inquire biology: a textbook that answers questions. AI Mag. 34(3), 55–72 (2013)CrossRefGoogle Scholar
  3. 3.
    Chen, X.: Electronic geometry textbook: a geometric textbook knowledge management system. In: Autexier, S., et al. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp. 278–292. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14128-7_24CrossRefGoogle Scholar
  4. 4.
    Chen, X., Li, W., Luo, J., Wang, D.: Open geometry textbook: a case study of knowledge acquisition via collective intelligence. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 432–437. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31374-5_31CrossRefGoogle Scholar
  5. 5.
    Chen, X., Wang, D.: Towards an electronic geometry textbook. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 1–23. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77356-6_1CrossRefGoogle Scholar
  6. 6.
    Cohen, A., Cuypers, H., Verrijzer, R.: Mathematical context in interactive documents. Math. Comput. Sci. 3(3), 331–347 (2010)CrossRefGoogle Scholar
  7. 7.
    Elizarov, A., Kirillovich, A., Lipachev, E., Nevzorova, O.: Digital ecosystem OntoMath: mathematical knowledge analytics and management. In: Kalinichenko, L., Kuznetsov, S.O., Manolopoulos, Y. (eds.) DAMDID/RCDL 2016. CCIS, vol. 706, pp. 33–46. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57135-5_3CrossRefGoogle Scholar
  8. 8.
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [Version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11826095CrossRefGoogle Scholar
  9. 9.
    LAText: A Linear Algebra Textbook System. http://www.latext.net/
  10. 10.
    Melis, E., Siekmann, J.: ActiveMath: an intelligent tutoring system for mathematics. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 91–101. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24844-6_12CrossRefGoogle Scholar
  11. 11.
    Nkambou, R., Azevedo, R., Vassileva, J. (eds.): ITS 2018. LNCS, vol. 10858. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91464-0CrossRefzbMATHGoogle Scholar
  12. 12.
    OpenMath Home. http://www.omdoc.org/
  13. 13.
    Quaresma, P.: Towards an intelligent and dynamic geometry book. Math. Comput. Sci. 11(3–4), 427–437 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wilson, K., Nichols, Z.: The Knewton platform: a general-purpose adaptive learning infrastructure. A Knewton White Paper (2015)Google Scholar
  15. 15.
    Windsteiger, W.: Theorema 2.0: a brief tutorial. In: Proceedings of SYNASC 2017, pp. 1–3. IEEE Explore (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xiaoyu Chen
    • 1
    • 2
  • Haotian Shuai
    • 3
  • Dongming Wang
    • 1
    • 2
    • 3
  • Jing Yang
    • 3
  1. 1.Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijingChina
  2. 2.LMIB-SKLSDE, School of Mathematics and Systems ScienceBeihang UniversityBeijingChina
  3. 3.SMS-HCIC, College of Software and Information SecurityGuangxi University for NationalitiesNanningChina

Personalised recommendations