Skip to main content
  • 880 Accesses

Abstract

Temporomandibular disorder is the term used for the musculoskeletal disorders of the jaw system, which comprises the temporomandibular joints and its associated musculature. In the past decades, several concepts on the pathology, diagnosis, and management of temporomandibular disorders have been proposed, which have resulted in several classifications of these disorders. The most commonly used is the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) (Schiffman et al., J Oral Facial Pain Headache 28:6–27, 2014). In this classification, TMJ disorders are distinguished from masticatory muscle disorders, although these categories commonly coexist. Within the category of TMJ disorders, pain (arthralgia, arthritis) and disorders (internal derangements, including disc interferences, adhesions, ankylosis, hypermobility) usually represent manifestations of TMJ disease, which include arthritic diseases and growth disorders. This chapter focuses on the pathophysiologic processes occurring in the most common group of joint disorders, i.e., TMJ degenerative diseases (Stegenga, J Oral Rehabil 37:760–765, 2010).

Author was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boering G. Osteoarthrosis of the temporomandibular joint. Thesis. Groningen, University of Groningen; 1966 (reprinted in English, 1994).

    Google Scholar 

  2. de Leeuw R, Boering G, Stegenga B, de Bont LGM. Clinical signs of TMJ osteoarthrosis and internal derangement of the temporomandibular joint 30 years after non-surgical management. J Orofac Pain. 1994;8:18–24.

    Google Scholar 

  3. de Bont LGM, Boering G, Liem RSB, et al. Osteoarthrosis and internal derangement of the temporomandibular joint. A light microscopic study. J Oral Maxillofac Surg. 1986;44:634–43.

    Google Scholar 

  4. Dijkgraaf LC, Liem RSB, de Bont LGM. Synovial membrane involvement in osteoarthritic temporomandibular joints. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:373–86.

    Google Scholar 

  5. Stegenga B, de Bont LGM, Boering G. Osteoarthrosis as the cause of craniomandibular pain and dysfunction. A unifying concept. J Oral Maxilliofac Surg. 1989;47:249–56.

    Google Scholar 

  6. Stegenga B. Nomenclature and classification of temporomandibular joint disorders. J Oral Rehabil. 2010;37:760–5.

    Google Scholar 

  7. Stegenga B, de Bont LGM, Boering G, van Willigen JD. Tissue responses to degenerative changes in the temporomandibular joint. J Oral Maxillofac Surg. 1991;49:1079–88.

    Google Scholar 

  8. Luqmani R, Robb J, Porter D, Joseph B. Textbook of orthopaedics, trauma and rheumatology. 2nd ed. Edinburgh: Elsevier Mosby; 2013.

    Google Scholar 

  9. Stegenga B. Osteoarthritis of the temporomandibular joint organ and its relationship to disc displacement. J Orofac Pain. 2001;15:193–205.

    Google Scholar 

  10. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87:296–307.

    Google Scholar 

  11. Haskin CL, Milam SB, Cameron IL. Pathogenesis of degenerative joint disease in the human temporomandibular joint. Crit Rev Oral Biol Med. 1995;6:248–77.

    Google Scholar 

  12. Milam SB, Schmitz JP. Molecular biology of temporomandibular joint disorders: proposed mechanisms of disease. J Oral Maxillofac Surg. 1995;53:1448–54.

    Google Scholar 

  13. Alstergren P, Appelgren A, Appelgren B, et al. Co-variation of neuropeptide Y, calcitonin gen-related peptide, substance P and neurokinin A in joint fluid from patients with temporomandibular joint arthritis. Arch Oral Biol. 1995;40:127–35.

    Google Scholar 

  14. Holmlund A, Ekblom A, Hansson P, et al. Concentrations of neuropeptides substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid of the human temporomandibular joint. A correlation with symptoms, signs and arthroscopic findings. Int J Oral Maxillofac Surg. 1991;20:228–31.

    Google Scholar 

  15. Milam SB, Zardaneta G, Schmitz JP. Oxidative stress and degenerative temporomandibular joint disease: a propose hypothesis. J Oral Maxillofac Surg. 1998;56:214–23.

    Google Scholar 

  16. Vos LM, Huddleston Slater JJR, Leijsma MK, Stegenga B. Does hypoxia-reperfusion injury occur in osteoarthritis of the temporomandibular joints? J Orofac Pain. 2012;26:233–9.

    Google Scholar 

  17. Liu Z, Peng YJ, Long X, et al. Mutual effects between neuropeptides and inflammatory cytokines in neurogenic SMSCs of human temporomandibular joint. J Huazhong Univ Sci Technol. 2014;34:602–7.

    Google Scholar 

  18. Alstergren P, Kopp S. Prostaglandin E2 in temporomandibular joint synovial fluid and its relation to pain and inflammatory disorders. J Oral Maxillofac Surg. 2000;58:180–6.

    Google Scholar 

  19. Su SC, Tanimoto K, Tanne Y, et al. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthr Cartil. 2014;22:845–51.

    Google Scholar 

  20. Cevidanes LH, Walker D, Schilling J, et al. 3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease. Osteoarthr Cartil. 2014;22:1657–67.

    Google Scholar 

  21. Vernal R, Velasquez E, Gamonal J, et al. Expression of proinflammatory cytokines in osteoarthritis of the temporomandibular joint. Arch Oral Biol. 2008;53:910–5.

    Google Scholar 

  22. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23:471–8.

    Google Scholar 

  23. Kubota E, Imamura H, Kubota T, Shibata T. Interleukin 1β and stromelysin (MMP3) activity of synovial fluid as possible markers of osteoarthritis in the temporomandibular joint. J Oral Maxillofac Surg. 1997;55:20–7.

    Google Scholar 

  24. Kubota E, Kubota T, Matsumoto J, Shibata T. Synovial fluid cytokines and proteinases as markers of temporomandibular joint disease. J Oral Maxillofac Surg. 1998;56:192–8.

    Google Scholar 

  25. Chen W, Tang Y, Zheng M, et al. Regulation of plasminogen activator activity and expression by cyclic mechanical stress in rat mandibular condylar chondrocytes. Mol Med Rep. 2013;8:1155–62.

    Google Scholar 

  26. Li W, Wu M, Jiang S, et al. Expression of ADAMTs-5 and TIMP-3 in the condylar cartilage of rats induced by experimentally created osteoarthritis. Arch Oral Biol. 2014;59:524–9.

    Google Scholar 

  27. Shirakura M, Tanimoto K, Eguchi H, et al. Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis. Biochem Biophys Res Commun. 2010;393:800–5.

    Google Scholar 

  28. Tanaka E, Aoyama J, Miyauchi M, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem Cell Biol. 2005;123:275–81.

    Google Scholar 

  29. Embree M, Ono M, Kilts T, et al. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J Dent Res. 2011;90:1331–8.

    Google Scholar 

  30. Jiao K, Niu LN, Wang MQ, et al. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyle of rats. Bone. 2011;48:362–71.

    Google Scholar 

  31. Jiao K, Zhang M, Niu L, et al. Overexpressed TGF-beta in subchondral bone leads to mandibular condyle degeneration. J Dent Res. 2014;93:140–7.

    Google Scholar 

  32. Zhao YP, Zhang ZY, Wu YT, et al. Investigation of the clinical and radiographic features of osteoarthrosis of the temporomandibular joints in adolescents and young adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:e27–34.

    Google Scholar 

  33. Wang XD, Kou XX, Meng Z, et al. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res. 2013;92:918–24.

    Google Scholar 

  34. Weinans H, Siebelt M, Agricola R, et al. Pathophysiology of peri-articular bone changes in osteoarthritis. Bone. 2012;51:190–6.

    Google Scholar 

  35. Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1:519–22.

    Google Scholar 

  36. Wang XD, Cui SJ, Liu Y, et al. Deterioration of mechanical properties of discs in chronically inflamed TMJ. J Dent Res. 2014;93:1170–6.

    Google Scholar 

  37. Tanaka E, Hirose M, Yamano E, et al. Age-associated changes in viscoelastic properties of the bovine temporomandibular joint disc. Eur J Oral Sci. 2006;114:70–3.

    Google Scholar 

  38. Hill A, Duran J, Purcell P. Lubricin protects the temporomandibular joint surfaces from degeneration. PLoS One. 2014;9:e106497.

    Google Scholar 

  39. Lang TC, Zimny ML, Vijayagopal P. Experimental temporomandibular joint disc perforation in the rabbit: a gross morphologic, biochemical, and ultrastructural analysis. J Oral Maxillofac Surg. 1993;51:1115–28.

    Google Scholar 

  40. Hui AY, McCarty WJ, Masua K, et al. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4:15–37.

    Google Scholar 

  41. Leonardi R, Perrotta RE, Almeida L-E, et al. Lubricin in synovial fluid of mild and severe temporomandibular joint internal derangements. Med Oral Pathol Cir Bucal. 2016;21:e793–9.

    Google Scholar 

  42. Asakawa-Tanne Y, Su S, Kunimatsu R, et al. Effects of enzymatic degradation after loading in temporomandibular joint. J Dent Res. 2015;94:337–43.

    Google Scholar 

  43. Koolstra JH. Biomechanical analysis of the influence of friction in jaw joint disorders. Osteoarthr Cartil. 2012;20:43–8.

    Google Scholar 

  44. Koyama E, Saunders C, Salhab I. Lubricin is required for the structural integrity and postnatal maintenance of TMJ. J Dent Res. 2014;93:663–70.

    Google Scholar 

  45. Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115:622–31.

    Google Scholar 

  46. Guo H, Fang W, Li Y, et al. Up-regulation of proteoglycan 4 in temporomandibular osteoarthritic synovial cells by hyaluronic acid. J Oral Pathol Med. 2015;44:622–7.

    Google Scholar 

  47. Teeple E, Elsaid KA, Jay GD. Effects of supplemental intra-articular lubricin and hyaluronic acid on the progression of posttraumatic arthritis in the anterior cruciate ligament-deficient rat knee. Am J Sports Med. 2011;39:164–72.

    Google Scholar 

  48. Kalladka M, Quek S, Heir G, et al. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review. J Indian Prosthodont Soc. 2014;14:6–15.

    Google Scholar 

  49. Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. 2013;9:400–10.

    Google Scholar 

  50. Könönen M, Waltimo A, Nyström M. Does clicking in adolescence lead to painful temporomandibular joint locking? Lancet. 1996;347:1080–1.

    Google Scholar 

  51. Sato S, Goto S, Nasu F, Motegi K. Natural course of disc displacement with reduction of the temporomandibular joint: changes in clinical signs and symptoms. J Oral Maxillofac Surg. 2003;61:32–4.

    Google Scholar 

  52. Kircos LT, Ortendahl DA, Mark AS, Arakawa M. Magnetic resonance imaging of the TMJ disc in asymptomatic volunteers. J Oral Maxillofac Surg. 1987;45:852–4.

    Google Scholar 

  53. Pereira FJ Jr, Lundh H, Westesson PL. Clinical findings related to morphologic changes in TMJ autopsy specimens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1994;78:288–95.

    Google Scholar 

  54. Sato S, Kawamura H, Nagasaka H, Motegi K. The natural course of anterior disc displacement without reduction in the temporomandibular joint: follow-up at 6, 12, and 18 months. J Oral Maxillofac Surg. 1997;55(3):234–8.

    Google Scholar 

  55. Kurita K, Westesson PL, Yuasa H, et al. Natural course of untreated symptomatic temporomandibular joint disc displacement without reduction. J Dent Res. 1998;77:361–5.

    Google Scholar 

  56. Hunter DJ, Pike MC, Jonas BL, et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord. 2010;11:232.

    Google Scholar 

  57. McPherson R, Flechenshar K, Hellot S, Eckstein F. A randomized, double blind, placebo-controlled multicenter study of FGF 18 administered intra-articularly using single or multiple ascending doses in patients with primary knee osteoarthritis, not expected to require knee surgery within a year. Osteoarthr Cartil. 2011;19(suppl 1):S35–6.

    Google Scholar 

  58. Guarda-Nardini L, Olivo M, Ferronato G, et al. Treatment effectiveness of arthrocentesis plus hyaluronic acid injections in different age groups of patients with temporomandibular joint osteoarthritis. J Oral Maxillofac Surg. 2012;70:2048–56.

    Google Scholar 

  59. Manfredini D, Rancitelli D, Ferronato G, Guarda-Nardini L. Arthrocentesis with or without additional drugs in temporomandibular joint inflammatory-degenerative disease: comparison of six treatment protocol. J Oral Rehabil. 2012;39:245–51.

    Google Scholar 

  60. Nitzan DW, Price A. The use of arthrocentesis for the treatment of osteoarthritic temporomandibular joints. J Oral Maxillofac Surg. 2001;59:1154–9.

    Google Scholar 

  61. Vos LM, Huddleston Slater JJR, Stegenga B. Arthrocentesis as initial treatment for temporomandibular joint arthropathy: a randomized controlled trial. J Cranio-Maxillofac Surg. 2014;42:e134–9.

    Google Scholar 

  62. Manfredini D, Favero L, Del Giudice A, et al. Axis II psychosocial findings predict effectiveness of TMJ hyaluronic acid injections. Int J Oral Maxillofac Surg. 2013;42:364–8.

    Google Scholar 

  63. Germer CK, Neff KD. Self-compassion in clinical practice. J Clin Psychol. 2013;69:856–67.

    Google Scholar 

  64. Neff KD. Self-compassion, self-esteem, and well-being. Social Personal Psychol Compass. 2011;5:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Stegenga, B. (2019). Pathophysiology of Temporomandibular Disorders. In: Connelly, S.T., Tartaglia, G.M., Silva, R.G. (eds) Contemporary Management of Temporomandibular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-99915-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99915-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99914-2

  • Online ISBN: 978-3-319-99915-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics