Advertisement

Laser Micromachining of Engineering Materials—A Review

  • Nadeem Faisal
  • Divya ZindaniEmail author
  • Kaushik Kumar
  • Sumit Bhowmik
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Miniaturization has led to an increase in the use of micromachining processes. The need for the material processing at microatomic resolution at an economical cost has underpinned this technology in many industries. Laser micromachining is a precise noncontact type of machining process which is used in the fabrication of micro-components ranging up to 500 µm. Laser ablation distinctively focuses on the small elemental areas which helps to absorb a high percentage of energy. This chapter represents an overview of various researches carried out in laser machining fields, its applicability and the advancements made. It also shows the implementation of ultrashort and femtosecond pulsed laser micromachining. Laser micromachining has lot of advantages over conventional contact machining processes as for instance the machining of any workpiece material can be easily accomplished within predefined time. Femtosecond laser machining can machine even transparent materials like glass, sapphire. The analysis of various theoretical and experimental research is used to describe the performance of laser beam micromachining (LBMM) on some of the advanced engineering materials.

Keywords

Laser micromachining Femtosecond pulse Miniaturization Noncontact machining Ultrashort pulse 

References

  1. 1.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn (Wiley, 2007).  https://doi.org/10.1002/9783527635245.ch2CrossRefGoogle Scholar
  2. 2.
    S.C. Singh, H. Zeng, C. Guo, W. Cai, Lasers: fundamentals, types, and operations, in Nanomaterials: Processing and Characterization with Lasers (2012), pp. 1–34.  https://doi.org/10.1002/9783527646821.ch1CrossRefGoogle Scholar
  3. 3.
    A.P. Kumar, Laser micromachining: technology and applications. Int. J. Eng. Res. Appl. (IJERA), ISSN: 2248-9622 National Conference on Advances in Engineering and Technology. (AET-29th March 2014)Google Scholar
  4. 4.
    Q. Bian, S. Chen, B.T. Kim, N. Leventis, H. Lu, Z. Chang, S. Lei, Micromachining of polyurea aerogel using femtosecond laser pulses. J. Non-Crystal. Solids 357(1), 186–193 (2011).  https://doi.org/10.1016/j.jnoncrysol.2010.09.037CrossRefGoogle Scholar
  5. 5.
    U. Klotzbach, A.F. Lasagni, M. Panzner, V. Franke, Laser Micromachining, in Fabrication and Characterizationin the Micro-Nano Range, Advanced Structured Materials, ed. by F.A. Lasagni, A.F. Lasagni, vol. 10 (2011).  https://doi.org/10.1007/978-3-642-17782-8_2CrossRefGoogle Scholar
  6. 6.
    U. Klotzbach, A.F. Lasagni, M. Panzner, V. Franke, Laser Micromach. Spr. 10, 29–119 (2011).  https://doi.org/10.1007/978-3-642-17782-8CrossRefGoogle Scholar
  7. 7.
    H. KnowlesR, Karnakis G. RutterfordM, A.D. Ferguson, Micromachining of metals, ceramics and polymers using nanosecond lasers. Int. J. Adv. Manuf. Technol. 33, 95–102 (2007).  https://doi.org/10.1007/s00170-007-0967-2CrossRefGoogle Scholar
  8. 8.
    T. Brettschneider, C. Dorrer, D. Czurratis, R. Zengerle, M. Daub, Laser micromachining as a metallization tool for micro fluidic polymer stacks. J. Micromech. Micro Eng. 23(3) (2013).  https://doi.org/10.1088/0960-1317/23/3/035020CrossRefGoogle Scholar
  9. 9.
    R.P. Patel, D.M. Patel, Grey relational analysis based optimization of laser cutting process parameters for aluminum alloy—a review. Int. J. Eng. Res. Technol. (IJERT) 3(3) (2014). ISSN: 2278-0181Google Scholar
  10. 10.
    M.R.M. Rejab, T.T. Mon, M.F.F. Rashid, N.S.M. Shalahim, M.F. Ismail, Virtual laser-micromachining of MEMS components. Int. J. Recent Trend. Eng. 1(5) (2009)Google Scholar
  11. 11.
    A. Parashar, J.S. Mann, A. Shah, N.R. Sivakumar, Numerical and experimental study of interference based micromachining of stainless steel. JLMN-J. Laser Micro/ Nano-eng. 4(2) (2009)Google Scholar
  12. 12.
    M. Manjaiah, S. Narendranath, S. Basavarajappa, Review on non-conventional machining of shape memory alloys. Trans. Nonferrous Metals Soc. China (English Edition) 24(1), 12–21 (2014).  https://doi.org/10.1016/S1003-6326(14)63022-3CrossRefGoogle Scholar
  13. 13.
    Y. Long, Q. Liu, Z. Zhong, L. Xiong, T. Shi, Experimental study on the processes of laser-enhanced electrochemical micromachining stainless steel. Optik 126(19), 1826–1829 (2015).  https://doi.org/10.1016/j.ijleo.2015.05.019CrossRefGoogle Scholar
  14. 14.
    S.N. Akhtar, S.A. Ramakrishna, J. Ramkumarv, Excimer laser micromachining for miniaturized hybrid microwave integrated circuits. Directions 15(1) (2015)Google Scholar
  15. 15.
    A. Sen, B. Doloi, B. Bhattacharyya, Experimental studies on fibre laser micro-machining of Ti-6al-4v, in 5th International & 26th All India Manufacturing Technology, Design and Research conference (AIMTDR 2014), 14 Dec 2014Google Scholar
  16. 16.
    N.S.M. Shalahim, T.T. Mon, M.F. Ismail, M.F.F. Rashid, M.R.M. Rejab, Finite Element Simulation of Laser-Micromachining”. Proceedings of the International Multi Conference of Engineers and Computer Scientists, IMECS 2010, vol. 3 (Hong Kong, 17–19 March 2010)Google Scholar
  17. 17.
    C.K. Walker, G. Narayanan, H. Knoepfle, J. Capara, J. Glenn, A. Hungerford, T.M. Bloomstein, S.T. Palmacci, M.B. Stern, J.E. Curtin, Laser micromachining of silicon: a new technique for fabricating high quality terahertz waveguide components, in Proceedings of 8th international symposium on space terahertz technology (Harvard University, 1997), p. 358Google Scholar
  18. 18.
    L. Slatineanu, M. Coteaţă, O. Dodun, A. Iosub, L. Apetrei, Impact phenomena in the case of some non-traditional machining processes, in Project No. ID 625 National Council of Scientific Research in Higher Education (Romania) (2008)CrossRefGoogle Scholar
  19. 19.
    S. Mishra, V. Yadava, Laser beam micromachining (LBMM)—a review. Opt. Lasers Eng. (2015).  https://doi.org/10.1016/j.optlaseng.2015.03.017CrossRefGoogle Scholar
  20. 20.
    M.C. Gower, Industrial applications of laser micromachining. Opt. Exp. 7(2), 56–67 (2000).  https://doi.org/10.1364/OE.7.000056CrossRefGoogle Scholar
  21. 21.
    N. Bloembergen, Laser-material interactions; fundamentals and applications, in AIP Conference Proceedings, vol. 288. (1993), pp. 3–10.  https://doi.org/10.1063/1.44887
  22. 22.
    J.C. Miller, History, scope and the future of laser ablation, in Laser Ablation, Principles and Applications, ed. by J.C. Miller. Springer (1994)Google Scholar
  23. 23.
    Y. Kawamura, K. Toyoda, S. Namba, Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl. Phys. Lett. 40(5), 374–375 (1982).  https://doi.org/10.1063/1.93108CrossRefGoogle Scholar
  24. 24.
    R. Srinivasan, V. Mayne-Banton, Self-developing photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl. Phys. Lett. 41(6), 576–578 (1982).  https://doi.org/10.1063/1.93601CrossRefGoogle Scholar
  25. 25.
    B. Wilhelmi, J. Herrmann, Lasers for Ultrashort Light Pulses, OSTI-Identifier:5733239 (United States, 1987)Google Scholar
  26. 26.
    M.S. Brown, C.B. Arnold, Fundamentals of laser-material interaction and application to multiscale surface modificatication. Springer Ser. Mat. Sci. 135(0933–033X), 91–120 (2010).  https://doi.org/10.1007/978-3-642-10523-4.Google Scholar
  27. 27.
    J.R. Lankard, G.E. Wolbold, Laser ablation of polyimide in a manufacturing facility. Appl. Phys. A54, 355 (1992)Google Scholar
  28. 28.
    F.O. Olsen, L. Alting, Pulsed laser materials processing, ND-YAG versus CO2 Lasers. CIRP Ann. Manuf. Technol. 44(1), 141–145 (1995).  https://doi.org/10.1016/S0007-8506(07)62293-8CrossRefGoogle Scholar
  29. 29.
    J. Meijer, Laser beam machining (LBM), state of the art and new opportunities. J. Mat. Process. Technol. 149, 2–17 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.02.003CrossRefGoogle Scholar
  30. 30.
    X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quant. Electronics, 33(10), 1706–1716 (1997).  https://doi.org/10.1109/3.631270CrossRefGoogle Scholar
  31. 31.
    E. Ohmura, I. Fukumoto, Study on fusing and evaporating process of fcc metal due to laser irradiation using molecular dynamics. Int. J. Jpn. Soc. Precis. Eng. 30, 47–48 (1996)Google Scholar
  32. 32.
    F.J. McClung, R.W. Hellwarth, Giant optical pulsations from ruby. J. Appl. Phys. 33(3), 828–829 (1962).  https://doi.org/10.1063/1.1777174CrossRefGoogle Scholar
  33. 33.
    R.S. Patel, T.F. Redmond, C. Tessler, D. Tudryn, D. Pulaski, Production benefits from excimer laser tools, in Laser Focus World (1996)Google Scholar
  34. 34.
    C. Rowan, Excimer lasers drill precise holes with higher yields, in Laser Focus World (1995)Google Scholar
  35. 35.
    M.C. Gower, Excimer lasers for surgery and biomedical fabrication, in Nanotechnology in Medicine and the Biosciences, ed. by R.R.H. Coombs, D.W. Robinson (Gordon & Breach, New York, 1996)Google Scholar
  36. 36.
    B. Tan, K. Venkatakrishnan, Thermal coupling in multishot laser microvia drilling for interconnection application. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 211–215 (2006).  https://doi.org/10.1116/1.2162573CrossRefGoogle Scholar
  37. 37.
    J.N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, USA, 2006). ISBN 9780072466850Google Scholar
  38. 38.
    C.B. Arnold, A. Piqué, Laser Direct-Write Processing. MRS Bulletin 32, 15 (2007)Google Scholar
  39. 39.
    K. Venkatakrishnan, B. Tan, N.R. Sivakumar, Submicron machining of metallic film by low influence ultrashort”. Opt. Laser Technol. 34, 575–578 (2002)CrossRefGoogle Scholar
  40. 40.
    S.D. Allen, M. Bass, M.L. Teisniger, Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials, in CLEO Conference Summary (1982)Google Scholar
  41. 41.
    F. Bachman, Excimer lasers in a fabrication line for a highly integrated printed circuit board. Chemtronics 4, 149 (1989)Google Scholar
  42. 42.
    P. Crosby, Get to know types of lasers, in Materials Processing Units from Coherent Inc. June 2002.Google Scholar
  43. 43.
    J.P. Desbiens, P. Masson, ArF excimer laser micromachining of Pyrex, SiC and PZT for rapid prototyping of MEMS components. Sens. Actuators A Phys. 136(2), 554–563 (2007).  https://doi.org/10.1016/j.sna.2007.01.002CrossRefGoogle Scholar
  44. 44.
    W.S. Lau, W.B. Lee, S.Q. Pang, Pulsed Nd: YAG laser cutting of carbon fibre composite materials. CIRP Ann. Manuf. Technol. 39(1), 179–182 (1990).  https://doi.org/10.1016/S0007-8506(07)61030-0CrossRefGoogle Scholar
  45. 45.
    J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, W. Schulz, Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51(2), 531–550 (2002).  https://doi.org/10.1016/S0007-8506(07)61699-0CrossRefGoogle Scholar
  46. 46.
    H.W. Mocker, R.J. Collins, Mode competition and self-locking effects in a q-switched ruby laser. Appl. Phys. Lett. 7(10), 270–273 (1965).  https://doi.org/10.1063/1.1754253CrossRefGoogle Scholar
  47. 47.
    E. Ohmura, I. Fukumoto, I. Miyamoto, Molecular dynamics simulationon laser ablation and thermal shock phenomena, in Proceedings of the ICALEO (1998), pp. A45–A54Google Scholar
  48. 48.
    R. Paschotta, R.P. Photonics, C. Gmbh, Solid state lasers for ultrashort pulses—a diverse family, in Photonick International (2006), pp. 1–4Google Scholar
  49. 49.
    S. Ronald, Fundamentals of Laser Micromachining (CRC Press, A Taylor & Francis Group, USA, 2012). ISBN 9781439860557Google Scholar
  50. 50.
    M.N. Watson, Laser drilling of printed circuit boards, in Circuit World, (1984), pp. 11, 13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nadeem Faisal
    • 1
  • Divya Zindani
    • 2
    Email author
  • Kaushik Kumar
    • 1
  • Sumit Bhowmik
    • 2
  1. 1.Department of Mechanical EngineeringBirla Institute of TechnologyMesraIndia
  2. 2.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations