Advertisement

Abrasive Waterjet Cutting of Lanthanum Phosphate—Yttria Composite: A Comparative Approach

  • K. Balamurugan
  • M. UthayakumarEmail author
  • S. Sankar
  • U. S. Hareesh
  • K. G. K. Warrier
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

The objective is to study the effect of Silicon Carbide (SiC) and Garnet of each 80 mesh size when used as abrasives while on machining LaPO4 + 20%Y2O3 composite in Abrasive Waterjet Machining (AWJM). The output responses, namely, Material Removal Rate (MRR), Kerf Angle (KA) and Surface Roughness (Ra) are measured with varied input parameters of Jet Pressure (JP), Stand-Off Distance (SOD), and Traverse Speed (TS). MRR and KA are found to be high in Garnet and better Ra in SiC. Microscopy examination on kerf surface reveals that failure is due to the development of internal stress and repetitive cyclic load of hard SiC abrasive. It leads to grain boundary and plastic deformation. Machining using Garnet tends to crush and squeeze the composite that guides to the formation of microcrack and weak grain bond. This study reveals that the use of SiC abrasive gives an acceptable range of output response than Garnet.

Keywords

Abrasive waterjet machine LaPO4/Y2O3 composite Abrasives Characterization 

Notes

Acknowledgements

The authors wish to express their thanks to DST-FIST Sponsored Advance Machining and Measurement Laboratory-Kalasalingam University for their support rendered to pursue this research work.

References

  1. 1.
    S. Lucas, E. Champion, D.B. Assollant et al., Rare earth phosphate powders RePO4 · nH2O (Re = La, Ce or Y) II Thermal behavior. J. Solid State Chem. 177, 1312–1320 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Gong, B. Zhang, H. Zhang et al., Pressure less sintering of machinable Al2O3/LaPO4 composites in N2 atmosphere. Ceram. Int. 32, 349–352 (2006)CrossRefGoogle Scholar
  3. 3.
    P.E.D. Morgan, D.B. Marshall, R.M. Housley et al., High-temperature stability of monazite-alumina composites. Mater. Sci. Eng. A 195, 215–222 (1995)CrossRefGoogle Scholar
  4. 4.
    R. Wang, W. Pan, M.J. Chen et al., Properties and microstructure of machinable Al2O3/LaPO4 ceramic composites. Ceram. Int. 29, 19–25 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Abdul Majeed, L. Vijayaraghavan, S.K. Malhotra et al., Ultrasonic machining of Al2O3/LaPO4 composites. J. Mach. Tools Manuf. 48, 40–46 (2008)CrossRefGoogle Scholar
  6. 6.
    W. Min, K. Daimon, T. Matsubara et al., Thermal and mechanical properties of sintered machinable LaPO4-Zr2O2 composites. Mat. Res. Bullet. 37, 1107–1115 (2002)CrossRefGoogle Scholar
  7. 7.
    O. Sahin, I. Demirkol, H. Gocmez et al., Mechanical properties of nanocrystalline tetragonal zirconia stabilized with CaO, MgO and Y2O3. Acta Phys. Pol. A 123, 296–298 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Huang, D. Jiang, J. Zhang et al., Fabrication of transparent lanthanum-doped yttria ceramics by combination of two-step sintering and vacuum sintering. J. Am. Ceram. Soc. 92, 2883–2887 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Sankar, K.G.K. Warrier, Aqueous sol-gel synthesis of LaPO4 nano rods starting from lanthanum chloride precursor. J. Sol-Gel Technol. 58, 195–200 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Sankar, A.N. Raj, C.K. Jyothi et al., Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite. Mat. Res. Bull. 47, 1835–1837 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Kumar, S. Chattopadhyaya, A.R. Dixit, B. Bora, M. Zelenak, J. Foldyna, S. Hloch, P. Hlavacek, J. Scucka, J. Klich, L. Sitek, P. Vilaca, Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints. J. Adv. Manuf. Technol. (2016).  https://doi.org/10.1007/s00170-016-8776-0CrossRefGoogle Scholar
  12. 12.
    J. Wang, Techniques for enhancing the cutting performance of abrasive waterjets. Key Eng. Mat. 257(258), 521–526 (2004)CrossRefGoogle Scholar
  13. 13.
    L.M. Hlavac, I.M. Hlavacova, V. Geryk, S. Plancar, Investigation of the taper of kerfs cut in steels by AWJ. J. Adv. Manuf. Technol. 77, 1811–1818 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Alberdi, A. Rivero, L.N.L. Lacalle, I. Etxeberria, A. Suarez, Effect of process parameter on the kerf geometry in abrasive water jet milling. J. Adv. Manuf. Technol. 51, 467–480 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Alberdi, T. Artaza, A. Suarez, A. Rivero, F. Girot, An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. J. Adv. Manuf. Technol. 86, 691–704 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Ghosh, B. Doloi, Parametric analysis and optimization on abrasive water jet cutting of silicon nitride ceramics. J. Prec. Technol. 5, 294–311 (2015)Google Scholar
  17. 17.
    L. Chen, T.E. Siorest, W.C.K. Wong, Kerf characteristics in abrasive waterjet cutting of ceramic materials. J. Mach. Tools Manuf. 36, 1201–1206 (1996)CrossRefGoogle Scholar
  18. 18.
    A. Hascalik, U. Caydas, H. Gurun, Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Mater. Des. 28, 1953–1957 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Kopac, P. Krajnik, Robust design of flank milling parameters based on grey-taguchi method. J. Mater. Process. Technol. 191, 400–403 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Wang, SuY Zhang, F. Yang, A key parameter to characterize the kerf profile error generated by abrasive water-jet. J. Adv. Manuf. Technol. (2016).  https://doi.org/10.1007/s00170-016-9402-xCrossRefGoogle Scholar
  21. 21.
    D.S. Srinivasu, D.A. Axinte, Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Proc. CIRP 13, 371–376 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Chen, X. Miao, Y. Tang, S. Yin, A review on recent advances in machining methods based on abrasive jet polishing (AJP). J. Adv. Manuf. Technol. (2016).  https://doi.org/10.1007/s00170-016-9405-7CrossRefGoogle Scholar
  23. 23.
    H. Onoda, A. Yoshida, The synthesis and properties of bulk lanthanum phosphates obtained by hydrothermal hot pressing. J. Ceram. Process. Res. 13, 622–626 (2012)Google Scholar
  24. 24.
    Y. Kim, M.H. Hong, S.H. Lee et al., The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met. Mat. Int. 12, 245–248 (2006)CrossRefGoogle Scholar
  25. 25.
    K. Rajesh, B. Sivakumar, P. Krishna Pillai et al., Synthesis of nanocrystalline lanthanum phosphate for low temperature densification to monazite ceramics. Mat. Lett. 58, 1687–1691 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Mogilevsky, E.E. Boakye, R.S. Hay, Solid solubility and thermal expansion in a LaPO4–YPO4 system. J. Am. Ceram. Soc. 90, 1899–1907 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Pirso, M. Viljus, K. Juhani, Three-body abrasive wear of TiC–Ni Mo cermets. Tribol. Int. 43, 340–346 (2010)CrossRefGoogle Scholar
  28. 28.
    A.A. Khan, M.M. Haque, Performance of different abrasive materials during abrasive water jet machining of glass. J. Mat. Process. Technol. 191, 404–407 (2007)CrossRefGoogle Scholar
  29. 29.
    G. Fowler, I.R. Pashby, P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266, 613–620 (2009)CrossRefGoogle Scholar
  30. 30.
    H.H.K. Xu, L. Wei, S. Jahanmir, Grinding force and micro crack density in abrasive machining of silicon nitride. J. Mat. Res. 10, 3204–3209 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Balamurugan
    • 1
  • M. Uthayakumar
    • 2
    Email author
  • S. Sankar
    • 3
  • U. S. Hareesh
    • 3
  • K. G. K. Warrier
    • 3
  1. 1.Department of Mechanical EngineeringVFSTR (Deemed to be University)Vadlamudi, GunturIndia
  2. 2.Faculty of Mechanical EngineeringKalasalingam UniversityKrishnankoilIndia
  3. 3.Material Sciences and Technology DivisionNational Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial ResearchThiruvananthapuramIndia

Personalised recommendations