Ultra-precision Diamond Turning Process

  • Vinod MishraEmail author
  • Harry Garg
  • Vinod Karar
  • Gufran S. KhanEmail author
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Higher quality and reliability of products is the main demand of manufacturing industries. Ultra-precision machining is the efficient technique to produce highly precise surface with complex shapes and micro-features. Surface quality in ultra-precision machining is only assured by strictly following the optimized process conditions. This chapter covers the various stages of the ultra-precision diamond turning process especially considering the practical aspects. This chapter provides the understanding of, importance and effects of each stage of ultra-precision machining including metrology.


  1. 1.
    S.S. To, V.H. Wang, W.B. Lee, Single point diamond turning technology, in Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning (Springer, 2018), pp. 3–6Google Scholar
  2. 2.
    D. Huo, K. Cheng, Diamond turning and micro turning, in Micro-Cutting (Wiley Ltd, 2013), pp. 153–183Google Scholar
  3. 3.
    J. RAMSDEN, Description of an engine for dividing straight lines on mathematical instruments. Published by Order of the Commissioners of Longitude, J. Nourse, 1779Google Scholar
  4. 4.
    N. Ikawa, R. Donaldson, R. Komanduri, W. König, P. McKeown, T. Moriwaki, I. Stowers, Ultraprecision metal cutting—the past, the present and the future. CIRP Ann. Manuf. Technol. 40, 587–594 (1991)CrossRefGoogle Scholar
  5. 5.
    V. Mishra, G.S. Khan, K.D. Chattopadhyay, K. Nand, R.V. Sarepaka, Effects of tool overhang on selection of machining parameters and surface finish during diamond turning. Measurement 55, 353–361 (2014)CrossRefGoogle Scholar
  6. 6.
    C.F. Cheung, W.B. Lee, A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning. Int J Mach Tool Manu 40, 979–1002 (2000)CrossRefGoogle Scholar
  7. 7.
    W.B. Lee, C.F. Cheung, J.G. Li, S. To, J.J. Du, Z.Q. Yin, Development of a virtual machining and inspection system for ultra-precision diamond turning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221, 1153–1174 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Khatri, R. Sharma, V. Mishra, M. Kumar, V. Karar, R.V. Sarepaka, An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics, in International Conference on Optics & Photonics 2015, International Society for Optics and Photonics (2015), pp. 96540M-96540M-96548Google Scholar
  9. 9.
    Z. Li, C. Chan, W. Lee, Y. Fu, Spectral analysis of surface roughness and form profile of a machined surface after low pressure lapping. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1399–1405 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Wang, K. Cheng, N. Nelson, W. Sawangsri, R. Rakowski, Cutting force-based analysis and correlative observations on the tool wear in diamond turning of single-crystal silicon. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229, 1867–1873 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Jafarian, D. Umbrello, S. Golpayegani, Z. Darake, Experimental investigation to optimize tool life and surface roughness in Inconel 718 machining. Mater. Manuf. Processes 31, 1683–1691 (2016)CrossRefGoogle Scholar
  12. 12.
    W. Sawangsri, K. Cheng, An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 405–415 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Sharma, N. Khatri, V. Mishra, H. Garg, V. Karar, Surface finish and subsurface damage distribution during diamond turning of silicon, in Advanced Materials Proceedings, ed. by H. Kobayashi (VBRI press, 2016), pp. 433–435Google Scholar
  14. 14.
    K.A. Desai, P.V.M. Rao, Machining of curved geometries with constant engagement tool paths. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 53–65 (2016)CrossRefGoogle Scholar
  15. 15.
    R.H. Abd El-Maksoud, M. Hillenbrand, S. Sinzinger, Parabasal theory for plane-symmetric systems including freeform surfaces. Opt. Eng. 53, 031303 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, L. Zheng, X. He, L. Wang, F. Zhang, S. Yu, G. Shi, B. Zhang, Q. Liu, T. Wang, Design Fabric. Imag. Opt. Syst. Freeform Surf. 8486, 848607–848610 (2012)Google Scholar
  17. 17.
    G.E. Davis, J.W. Roblee, A.R. Hedges, Comparison of freeform manufacturing techniques in the production of monolithic lens arrays, in Proceedings SPIE (2009), pp. 742605–742608Google Scholar
  18. 18.
    Y. Tohme, R. Murray, E. Allaire, Principles and applications of the slow slide servo, Moore Nanotechnology Systems White Paper (2005)Google Scholar
  19. 19.
    R.G. Ohl Iv, T.A. Dow, A. Sohn, K. Garrard, Highlights of the ASPE 2004 winter topical meeting on free-form optics: design, fabrication, metrology, assembly (2004), pp. 49–56Google Scholar
  20. 20.
    F.Z. Fang, X.D. Zhang, A. Weckenmann, G.X. Zhang, C. Evans, Manufacturing and measurement of freeform optics. CIRP Ann. Manuf. Technol. 62, 823–846 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Chapman, Ultra-precision machining systems; an enabling technology for perfect surfaces, Moore Nanotechnology Systems (2004)Google Scholar
  22. 22.
  23. 23.
  24. 24.
    V.K. Jain, Introduction to Micromachining (Alpha Science International Limited, 2010)Google Scholar
  25. 25.
    R.L. Rhorer, C.J. Evans, Fabrication of optics by diamond turning, in Handbook of Optics, vol. 1 (1995), pp. 41.41–41.43Google Scholar
  26. 26.
    A.G. Thornton, J. Wilks, The wear of diamond tools turning mild steel. Wear 65, 67–74 (1980)CrossRefGoogle Scholar
  27. 27.
    R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci. 45, 358–366 (2009)CrossRefGoogle Scholar
  28. 28.
    F. Fang, X. Liu, L. Lee, Micro-machining of optical glasses—a review of diamond-cutting glasses. Sadhana 28, 945–955 (2003)CrossRefGoogle Scholar
  29. 29.
    E. Brinksmeier, W. Preuss, Micro-mach. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 370, 3973–3992 (2012)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    G. Ghosh, A. Sidpara, P.P. Bandyopadhyay, Fabrication of optical components by ultraprecision finishing processes, in Micro and Precision Manufacturing, ed. by K. Gupta (Springer International Publishing, Cham, 2018), pp. 87–119CrossRefGoogle Scholar
  32. 32.
    M.A. Davies, C.J. Evans, R.R. Vohra, B.C. Bergner, S.R. Patterson, Application of precision diamond machining to the manufacture of microphotonics components, in Proceedings of SPIE (2003), pp. 94–108Google Scholar
  33. 33.
    J. Wilks, Performance of diamonds as cutting tools for precision machining. Prec. Eng. 2, 57–72 (1980)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    K. Ramesh, W.G. Lewis, S.C. Veldhuis, A. Yui, Redefining the diamond cutting edge: a technique that complements nano-metric surface generation. Mat. Manuf. Process. 20, 895–903 (2005)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    I. Durazo-Cardenas, P. Shore, X. Luo, T. Jacklin, S.A. Impey, A. Cox, 3D characterisation of tool wear whilst diamond turning silicon. Wear 262, 340–349 (2007)CrossRefGoogle Scholar
  38. 38.
    W.J. Zong, Z.Q. Li, T. Sun, K. Cheng, D. Li, S. Dong, The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int. J. Mach. Tools Manuf. 50, 411–419 (2010)CrossRefGoogle Scholar
  39. 39.
    D.A. Lucca, Y.W. Seo, R. Komanduri, Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann. 42, 83–86 (1993)CrossRefGoogle Scholar
  40. 40.
    R.K. Pal, H. Garg, R.V. Sarepaka, V. Karar, Experimental investigation of material removal and surface roughness during optical glass polishing. Mat. Manuf. Process. 31, 1613–1620 (2016)CrossRefGoogle Scholar
  41. 41.
    T.H.C. Childs, D. Dornfeld, D.E. Lee, S. Min, K. Sekiya, R. Tezuka, Y. Yamane, The influence of cutting edge sharpness on surface finish in facing with round nosed cutting tools. CIRP J. Manuf. Sci. Technol. 1, 70–75 (2008)CrossRefGoogle Scholar
  42. 42.
    M. Tauhiduzzaman, S.C. Veldhuis, Effect of material microstructure and tool geometry on surface generation in single point diamond turning. Prec. Eng. 38, 481–491 (2014)CrossRefGoogle Scholar
  43. 43.
    W.B. Lee, C.F. Cheung, S. To, A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning. J. Manuf. Sci. Eng. 124, 170–177 (2002)CrossRefGoogle Scholar
  44. 44.
    M.A. Rahman, M.R. Amrun, M. Rahman, A.S. Kumar, Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties. Int. J. Mach. Tools Manuf. 115, 15–28 (2017)CrossRefGoogle Scholar
  45. 45.
    M. Lai, X. Zhang, F. Fang, Crystal orientation effect on the subsurface deformation of monocrystalline germanium in nanometric cutting. Nanoscale Res. Lett. 12, 296 (2017)CrossRefGoogle Scholar
  46. 46.
    L. Chen, L. Hu, C. Xiao, Y. Qi, B. Yu, L. Qian, Effect of crystallographic orientation on mechanical removal of CaF2. Wear 376–377, 409–416 (2017)CrossRefGoogle Scholar
  47. 47.
    S.S. To, V.H. Wang, W.B. Lee, Machinability of single crystals in diamond turning, in Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning (Springer, Berlin, Heidelberg, 2018), pp. 43–69Google Scholar
  48. 48.
    G.P.H. Gubbels, Diamond turning of glassy polymers, PhD Dissertation. Eindhoven University of Technology, The Netherland (2006)Google Scholar
  49. 49.
    A. Baumgärtner, Statics and dynamics of the freely jointed polymer chain with Lennard-Jones interaction. J. Chem. Phys. 72, 871–879 (1980)CrossRefGoogle Scholar
  50. 50.
    V. Mishra, N. Khatri, K. Nand, K. Singh, R.V. Sarepaka, Experimental investigation on uncontrollable parameters for surface finish during diamond turning. Mater. Manuf. Process. 30, 232–240 (2015)CrossRefGoogle Scholar
  51. 51.
    M.C. Gerchman, Optical tolerancing for diamond turning ogive error, in Reflective Optics II, International Society for Optics and Photonics (1989), pp. 224–230Google Scholar
  52. 52.
    L.E. Chaloux, Part fixturing for diamond machining, in 28th Annual Technical Symposium, SPIE (1984), p. 3Google Scholar
  53. 53.
    A. Sohn, Fixturing and alignment of free-form optics for diamond turning, in Proceedings of the American Society for Precision Engineering Winter Topical Meeting on Free-Form Optics: Design, Fabrication, Metrology, Assembly, Citeseer (2004)Google Scholar
  54. 54.
    M. Brunelle, J. Yuan, K. Medicus, J.D. Nelson, Importance of fiducials on freeform optics, in SPIE Optifab, International Society for Optics and Photonics (2015), pp. 963318-963318-963318Google Scholar
  55. 55.
    K. Medicus, J.D. Nelson, M. Brunelle, The need for fiducials on freeform optical surfaces, in SPIE Optical Engineering + Applications, SPIE (2015), p. 7Google Scholar
  56. 56.
    C.F. Cheung, W.B. Lee, Study of factors affecting the surface quality in ultra-precision diamond turning. Mater. Manuf. Process. 15, 481–502 (2000)CrossRefGoogle Scholar
  57. 57.
    V. Mishra, V. Karar, G.S. Khan, Analysis of surface roughness in slow tool servo machining of freeform optics. Asia Pac. J. (2017)Google Scholar
  58. 58.
    G.S. Khan, R.G.V. Sarepaka, K. Chattopadhyay, P. Jain, V. Narasimham, Effects of tool feed rate in single point diamond turning of aluminium-6061 alloy. Indian J. Eng. Mater. Sci. 10, 123–130 (2003)Google Scholar
  59. 59.
    K.-W. Kim, A study on the critical depth of cut in ultra-precision machining. J. Korean Soc. Prec. Eng. 19, 126–133 (2002)Google Scholar
  60. 60.
  61. 61.
    H.-N. Cheng, Specifying optics to be made by single point diamond turning,
  62. 62.
    X. Liu, L. Lee, X. Ding, F. Fang, Ultraprecision turning of aspherical profiles with deep sag, in 2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT’02 (IEEE, 2002), pp. 1152–1157Google Scholar
  63. 63.
    Y.E. Tohme, J.A. Lowe, Machining of freeform optical surfaces by slow slide servo method, in Proceedings of the American Society for Precision Engineering (ASPE) Annual Meeting (2004)Google Scholar
  64. 64.
    C. Xu, K. Min, W. Xingsheng, H. Muhammad, Y. Jun, Tool path optimal design for slow tool servo turning of complex optical surface. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231, 825–837 (2016)Google Scholar
  65. 65.
    V. Mishra, K. Pant, D.R. Burada, V. Karar, G. Khan, S. Jha, Generation of freeform surface by using slow tool servo, in Freeform Optics, Optical Society of America (2017), pp. FTh3B. 2Google Scholar
  66. 66.
    C.-C. Chen, C.-Y. Huang, W.-J. Peng, Y.-C. Cheng, Z.-R. Yu, W.-Y. Hsu, Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning, in Proceedings SPIE (2013), pp. 88380YGoogle Scholar
  67. 67.
    M. Zhou, H.J. Zhang, S.J. Chen, Study on diamond cutting of nonrationally symmetric microstructured surfaces with fast tool servo. Mater. Manuf. Process. 25, 488–494 (2010)CrossRefGoogle Scholar
  68. 68.
    K. Rogers, J. Roblee, Freeform machining with precitech servo tool options, Precitech tutorials (2005)Google Scholar
  69. 69.
    D.P. Yu, S.W. Gan, Y. San Wong, G.S. Hong, M. Rahman, J. Yao, Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int. J. Adv. Manuf. Technol. 63, 1137–1152 (2012)CrossRefGoogle Scholar
  70. 70.
    L. Qiang, Z. Xiaoqin, X. Pengzi, A new tool path for optical freeform surface fast tool servo diamond turning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228, 1721–1726 (2014)CrossRefGoogle Scholar
  71. 71.
    W.B. Lee, C.F. Cheung, W.M. Chiu, T.P. Leung, An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces. J. Mater. Process. Technol. 99, 129–134 (2000)CrossRefGoogle Scholar
  72. 72.
    N. Khatri, V. Mishra, R.G.V. Sarepaka, Optimization of process parameters to achieve nano level surface quality on polycarbonate. Optimization 48 (2012)CrossRefGoogle Scholar
  73. 73.
    S. Rohit, M. Vinod, K. Neha, G. Harry, K. Vinod, A hybrid fabrication approach and profile error compensation for silicon aspheric optics, in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2017) 0954405417733018Google Scholar
  74. 74.
    A.J. MacGovern, J.C. Wyant, Computer generated holograms for testing optical elements. Appl. Opt. 10, 619–624 (1971)CrossRefGoogle Scholar
  75. 75.
    X. Jiang, P. Scott, D. Whitehouse, Freeform surface characterisation-a fresh strategy. CIRP Ann. Manuf. Technol. 56, 553–556 (2007)CrossRefGoogle Scholar
  76. 76.
    J. Qiao, Z. Mulhollan, C. Dorrer, Optical differentiation wavefront sensing for freeform optics metrology, in Frontiers in Optics, Optical Society of America (2016), pp. FW5H. 5Google Scholar
  77. 77.
    K.K. Pant, D.R. Burada, M. Bichra, M.P. Singh, A. Ghosh, G.S. Khan, S. Sinzinger, C. Shakher, Subaperture stitching for measurement of freeform wavefront. Appl. Opt. 54, 10022–10028 (2015)CrossRefGoogle Scholar
  78. 78.
    G. Khan, Non-null technique for measurement of freeform wavefront using stitching approach, in Freeform Optics, Optical Society of America (2015), pp. FTh2B. 3Google Scholar
  79. 79.
    G. Khan, M. Bichra, A. Grewe, N. Sabitov, K. Mantel, I. Harder, A. Berger, N. Lindlein, S. Sinzinger, Metrology of freeform optics using diffractive null elements in Shack-Hartmann sensors, in 3rd EOS Conference on Manufacturing of Optical Components (2013), pp. 13–15Google Scholar
  80. 80.
    D.R. Burada, K.K. Pant, V. Mishra, M. Bichra, G.S. Khan, S. Sinzinger, C. Shakher, Development of metrology for freeform optics in reflection mode, in SPIE Optical Metrology, International Society for Optics and Photonics (2017), pp. 103291K-103291K-103298Google Scholar
  81. 81.
    P.A. Meyer, A framework for enhancing the accuracy of ultra precision machining (2009)Google Scholar
  82. 82.
    S. Takasu, M. Masuda, T. Nishiguchi, A. Kobayashi, Influence of study vibration with small amplitude upon surface roughness in diamond machining. CIRP Ann. Manuf. Technol. 34, 463–467 (1985)CrossRefGoogle Scholar
  83. 83.
    C. Cheung, W. Lee, A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 40, 979–1002 (2000)CrossRefGoogle Scholar
  84. 84.
    A. Yip, Factors affecting surface topography in diamond turning (2014)Google Scholar
  85. 85.
    P. Huang, W.B. Lee, C.Y. Chan, Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 94, 48–56 (2015)CrossRefGoogle Scholar
  86. 86.
    Q. Wu, Y. Sun, W. Chen, G. Chen, Theoretical and experimental investigation of spindle axial drift and its effect on surface topography in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 116, 107–113 (2017)CrossRefGoogle Scholar
  87. 87.
    M. Kong, W. Lee, C. Cheung, S. To, A study of materials swelling and recovery in single-point diamond turning of ductile materials. J. Mater. Process. Technol. 180, 210–215 (2006)CrossRefGoogle Scholar
  88. 88.
    J. Kumar, V.S. Negi, K.D. Chattopadhyay, R.V. Sarepaka, R.K. Sinha, Thermal effects in single point diamond turning: analysis, modeling and experimental study. Measurement 102, 96–105 (2017)CrossRefGoogle Scholar
  89. 89.
    V. Mishra, A.K. Biswas, N. Kumar, L.M. Kukreja, R.V. Sarepaka, Fabrication of λ/2 phase step mirror for CO2 laser resonator using diamond turning. Opt. Eng. 53, 036107 (2014)CrossRefGoogle Scholar
  90. 90.
    S. Zhang, S. To, G. Zhang, Diamond tool wear in ultra-precision machining. Int. J. Adv. Manuf. Technol. 88, 613–641 (2017)CrossRefGoogle Scholar
  91. 91.
    J. Yan, K. Syoji, J.I. Tamaki, Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255, 1380–1387 (2003)CrossRefGoogle Scholar
  92. 92.
    M.S. Uddin, K. Seah, X. Li, M. Rahman, K. Liu, Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear 257, 751–759 (2004)CrossRefGoogle Scholar
  93. 93.
    K. Singh, R.O. Vaishya, H. Singh, V. Mishra, S. Ramagopal, Investigation of tool life & surface roughness during single point diamond turning of silicon. Int. J. Sci. Res. 2, 265–267 (2013)Google Scholar
  94. 94.
    M. Shi, B. Lane, C. Mooney, T. Dow, R. Scattergood, Diamond tool wear measurement by electron-beam-induced deposition. Prec. Eng. 34, 718–721 (2010)CrossRefGoogle Scholar
  95. 95.
    W. Gao, T. Motoki, S. Kiyono, Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor. Prec. Eng. 30, 396–405 (2006)CrossRefGoogle Scholar
  96. 96.
    M. Maksimovic, Optical tolerancing of structured mid-spatial frequency errors on free-form surfaces using anisotropic radial basis functions, in Optical Systems Design 2015: Optical Design and Engineering VI, International Society for Optics and Photonics (2015), pp. 962613Google Scholar
  97. 97.
  98. 98.
    1 The solid surface, in Tribology Series, ed. by I. Iliuc (Elsevier, 1980), pp. 1–20Google Scholar
  99. 99.
    D. Whitehouse, Handbook of Surface and Nanometrology, University of Warwick (Institute of Physics Publishing, Bristol and Philadephia, 2003)CrossRefGoogle Scholar
  100. 100.
    G.S. Khan, R.G.V. Sarepaka, K. Chattopadhyay, P. Jain, R. Bajpai, Characterization of nanoscale roughness in single point diamond turned optical surfaces using power spectral density analysis. Indian J. Eng. Mater. Sci. 11, 25–30 (2004)Google Scholar
  101. 101.
    G.S. Khan, Characterization of Surface Roughness and Shape Deviations of Aspheric Surfaces, PhD Dissertation, University of Erlangen-Nuremberg, Germany (2008)Google Scholar
  102. 102.
    J.K. Lawson, C.R. Wolfe, K.R. Manes, J.B. Trenholme, D.M. Aikens, R.E. English, Specification of optical components using the power spectral density function, in Optical Manufacturing and Testing, International Society for Optics and Photonics (1995), pp. 38–51Google Scholar
  103. 103.
    C.F. Cheung, W.B. Lee, A multi-spectrum analysis of surface roughness formation in ultra-precision machining. Prec. Eng. 24, 77–87 (2000)CrossRefGoogle Scholar
  104. 104.
    E. Marx, I.J. Malik, Y.E. Strausser, T. Bristow, N. Poduje, J.C. Stover, Power spectral densities: a multiple technique study of different Si wafer surfaces. J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measure. Phenom. 20, 31–41 (2002)CrossRefGoogle Scholar
  105. 105.
    J.M. Elson, J.M. Bennett, Calculation of the power spectral density from surface profile data. Appl. Opt. 34, 201–208 (1995)CrossRefGoogle Scholar
  106. 106.
    R.S. Sayles, T.R. Thomas, The spatial representation of surface roughness by means of the structure function: a practical alternative to correlation. Wear 42, 263–276 (1977)CrossRefGoogle Scholar
  107. 107.
    U. Griesmann, J. Soons, Q. Wang, D. DeBra, Measuring form and radius of spheres with interferometry. CIRP Ann. Manuf. Technol. 53, 451–454 (2004)CrossRefGoogle Scholar
  108. 108.
    A. Beutler, Metrology for the production process of aspheric lenses. Advanced Optical Technologies 5, 211–228 (2016)CrossRefGoogle Scholar
  109. 109.
    D.J. Whitehouse, Handbook of surface metrology (CRC Press, 1994)Google Scholar
  110. 110.
    R.V. Sarepaka, S. Sakthibalan, S. Doodala, R.S. Panwar, R. Kotaria, Surface characterization protocol for precision aspheric optics, in Optifab 2017, International Society for Optics and Photonics (2017), pp. 104481DGoogle Scholar
  111. 111.
    R. Scheuer, T. Mueller, E. Reithmeier, Development of a fast measurement system for microstructured surfaces, in Imaging Systems and Applications, Optical Society of America (2013), pp. JTu4A. 30Google Scholar
  112. 112.
    H.N. Hansen, K. Carneiro, H. Haitjema, L. De Chiffre, Dimensional micro and nano metrology. CIRP Ann. 55, 721–743 (2006)CrossRefGoogle Scholar
  113. 113.
    A. Duparre, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J.M. Bennett, Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl. Opt. 41, 154–171 (2002)CrossRefGoogle Scholar
  114. 114.
    J.M. Bennett, Comparison of techniques for measuring the roughness of optical surfaces. Opt. Eng. 24, 243380 (1985)CrossRefGoogle Scholar
  115. 115.
    D.R. Burada, K.K. Pant, M. Bichra, G.S. Khan, S. Sinzinger, C. Shakher, Experimental investigations on characterization of freeform wavefront using Shack-Hartmann sensor. Opt. Eng. 56, 084107 (2017)CrossRefGoogle Scholar
  116. 116.
    A. Beaucampa, R. Freemana, R. Mortona, D. Walkerab, Metrology software support for free-form optics manufacturing, in Proceedings Conference (Chubu, Japan, Citeseer, 2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSIR-Central Scientific Instruments OrganizationChandigarhIndia
  2. 2.Indian Institute of Technology, Instrument Design and Development CenterDelhiIndia

Personalised recommendations