Micro and Nano Machining—An Industrial Perspective

  • Nadeem FaisalEmail author
  • Divya Zindani
  • Kaushik Kumar
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Micro and nano-machining are of the most emerging and growing fields in today’s fast-paced world with a large number of important applications. Demands for miniaturized products and devices has led to the development and requirement of micro and nano-scaled machining and processes. Micro and nano-machining are required in a large number of fields like biotechnology, electronics, medicine, optics, aviation’s, automobile, and communication to name a few. However, with a large number of application and huge requirement in various fields, these machining techniques are sophisticated and complicated when compared to their conventional or traditional part. This chapter describes few such micro and nano machining techniques with their applications in industry.


Micromachining Nano-machining Lithography Micro-EDM Turning Drilling Grinding Micro-USM Photolithography Micro-ECM Next-generation lithography (NGL) SCALPEL Micro-EBM 


  1. 1.
    X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005). Scholar
  2. 2.
    E. Uhlmann, M. Röhner, M. Langmack, T.-M. Schimmelpfennig, Micromanuf. Eng. Technol. (2015). Scholar
  3. 3.
    L. Alting, F. Kimura, H.N. Hansen, G. Bissacco, Micro engineering. CIRP Ann. Manuf. Technol. 52(2), 635–657 (2003). Scholar
  4. 4.
    N. Taniguchi, Current status in, and future trends of, ultra precision machining and ultrafine materials processing. CIRP Ann. Manuf. Technol. 32(2), 573–582 (1983). Scholar
  5. 5.
    T. Masuzawa, State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000). Scholar
  6. 6.
    M.J. Madou, Fundamentals of microfabrication: the science of miniaturization, in Fundamentals of Microfabrication: The Science of Miniaturization, vol. 49 (2002). Scholar
  7. 7.
    J. Corbett, R.A. McKeown, G.N. Peggs, R. Whatmore, Nanotechnology: international developments and emerging products. CIRP Ann. Manuf. Technol. 49(2), 523–545 (2000). Scholar
  8. 8.
    E.B. Brousseau, S.S. Dimov, D.T. Pham, Some recent advances in multi-material micro- and nano-manufacturing. Int. J. Adv. Manuf. Technol. 47(1–4), 161–180 (2010). Scholar
  9. 9.
    S.S. Dimov, C.W. Matthews, A. Glanfield, P. Dorrington, A roadmapping study in multi-material micro manufacture, in 4M 2006—Second International Conference on Multi-Material Micro Manufacture (2006), pp. xi–xxv. Scholar
  10. 10.
    Y. Qin, A. Brockett, Y. Ma, A. Razali, J. Zhao, C. Harrison, D. Loziak, Micro-manufacturing: research, technology outcomes and development issues. Int. J. Adv. Manuf. Technol. 47(9–12), 821–837 (2010). Scholar
  11. 11.
    M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. (2013). Scholar
  12. 12.
    X. Liu, R.E. DeVor, S.G. Kapoor, K.F. Ehmann, The mechanics of machining at the microscale: assessment of the current state of the science. J. Manuf. Sci. Eng. 126(4), 666 (2004). Scholar
  13. 13.
    S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179–196 (2000). Scholar
  14. 14.
    K. Liu, B. Lauwers, D. Reynaerts, Process capabilities of micro-EDM and its applications. Int. J. Adv. Manuf. Technol. 47(1–4), 11–19 (2010). Scholar
  15. 15.
    K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, A. DeSilva, Micro and nano machining by electro-physical and chemical processes. CIRP Ann. Manuf. Technol. 55(2), 643–666 (2006). Scholar
  16. 16.
    X.M. Hu, Photolithography technology in electronic fabrication, in International Power, Electronics and Materials Engineering Conference, (Ipemec) (2015), pp. 849–856Google Scholar
  17. 17.
    N. Taniguchi, Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products (University Press, Oxford, 1996)Google Scholar
  18. 18.
    A.P.G. Robinson, R. Lawson, Materials and Processes for Next Generation Lithography. Frontiers of Nanoscience, vol. 11 (2016). Scholar
  19. 19.
    J. Van Schoot, H. Schift, next-generation lithography—an outlook on EUV projection and nanoimprint. Adv. Opt. Technol. (2017). Scholar
  20. 20.
    V.Y. Banine, J.P.H. Benschop, H.G.C. Werij, Comparison of extreme ultraviolet sources for lithography applications. Microelectron. Eng. 53(1), 681–684 (2000). Scholar
  21. 21.
    R. Lebert, L. Aschke, K. Bergmann, S. Düsterer, K. Gäbel, D. Hoffmann, C. Ziener, Preliminary results from key experiments on sources for EUV lithography. Microelectron. Eng. 57–58, 87–92 (2001). Scholar
  22. 22.
    S.R. Mohanty, C. Cachoncinlle, C. Fleurier, E. Robert, J.M. Pouvesle, R. Viladrosa, R. Dussart, Recent progress in EUV source development at GREMI, in Microelectronic Engineering, vol. 61–62 (2002), pp. 179–185. Scholar
  23. 23.
    S. Ohki, S. Ishihara, An overview of X-ray lithography. Microelectron. Eng. 30(1–4), 171–178 (1996). Scholar
  24. 24.
    N. Mojarad, J. Gobrecht, Y. Ekinci, Interference lithography at EUV and soft X-ray wavelengths: principles, methods, and applications. Microelectron. Eng. 143, 55–63 (2015). Scholar
  25. 25.
    Y. Desta, J. Goettert, X-Ray masks for LIGA microfabrication, in LIGA and its Applications, vol. 7 (2009), pp. 11–50.
  26. 26.
    Y. Cheng, B.Y. Shew, M.K. Chyu, P.H. Chen, Ultra-deep LIGA process and its applications, in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467468 (PART II), pp. 1192–1197 (2001). Scholar
  27. 27.
    Y. Hirata, LIGA process—micromachining technique using synchrotron radiation lithography—and some industrial applications, in Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 208 (2003), pp. 21–26. Scholar
  28. 28.
    C.K. Malek, V. Saile, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectron. J. (2004). Scholar
  29. 29.
    S. Okazaki, High resolution optical lithography or high throughput electron beam lithography: the technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. (2015). Scholar
  30. 30.
    L.R. Harriott, S.D. Berger, C. Biddick, M.I. Blakey, S.W. Bowler, K. Brady, D. Windt, The SCALPEL proof of concept system. Microelectron. Eng. 35(1–4), 477–480 (1997)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. (2015). Scholar
  32. 32.
    R.A. Lawes, Future trends in high-resolution lithography. Appl. Surf. Sci. 154, 519–526 (2000). Scholar
  33. 33.
    J. Chae, S.S. Park, T. Freiheit, Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006). Scholar
  34. 34.
    T. Sumitomo, H. Huang, L. Zhou, J. Shimizu, Nanogrinding of multi-layered thin film amorphous Si solar panels. Int. J. Mach. Tools Manuf. 51(10–11), 797–805 (2011). Scholar
  35. 35.
    D. Huo, Micro-Cutting: Fundamentals and Applications (Wiley, London, 2013)Google Scholar
  36. 36.
    G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. CIRP Ann. Manuf. Technol. 52(2), 483–507 (2003). Scholar
  37. 37.
    N. Ikawa, R.R. Donaldson, R. Komanduri, W. König, T.H. Aachen, P.A. McKeown, I.F. Stowers, Ultraprecision metal cutting—the past, the present and the future. CIRP Ann. Manuf. Technol. 40(2), 587–594 (1991). Scholar
  38. 38.
    S. Shabouk, T. Nakamoto, Micro machining of diamond by ferrous material, in MHS 2001—Proceedings of 2001 International Symposium on Micromechatronics and Human Science (2001), pp. 35–40.
  39. 39.
    J. Xie, M.J. Luo, K.K. Wu, L.F. Yang, D.H. Li, Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro grooved tool. Int. J. Mach. Tools Manuf. 73, 25–36 (2013). Scholar
  40. 40.
    H.N. Li, T.B. Yu, Z.X. Wang, L.Da Zhu, W.S. Wang, Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. Int. J. Mech. Sci. 126, 319–339 (2017). Scholar
  41. 41.
    H.H. Gatzen, J. Chris Maetzig, Nanogrinding. Prec. Eng. 21, 134–139 (1997). Scholar
  42. 42.
    M. Hasan, J. Zhao, Z. Jiang, A review of modern advancements in micro drilling techniques. J. Manuf. Process. (2017). Scholar
  43. 43.
    S. Kumar, A. Dvivedi, P. Kumar, On tool wear in rotary tool micro-ultrasonic machining, in Minerals, Metals and Materials Series (2017), pp. 75–82. Scholar
  44. 44.
    K.P. Rajurkar, M.M. Sundaram, Process improvements in micro USM and micro EDM. Micro, Dec 2015Google Scholar
  45. 45.
    Z. Yu, C. Ma, C. An, J. Li, D. Guo, Prediction of tool wear in micro USM. CIRP Ann. Manuf. Technol. 61(1), 227–230 (2012). Scholar
  46. 46.
    D.V. Srikanth, M.S. Rao, Abrasive jet machining—research review. Int. J. Adv. Eng. Technol. 5(2), 18–24 (2014)Google Scholar
  47. 47.
    O.Y. Rogov, V.V. Artemov, M.V. Gorkunov, A.A. Ezhov, S.P. Palto, Fabrication of complex shape 3D photonic nanostructures by FIB lithography, in IEEE-NANO 2015—15th International Conference on Nanotechnology (2015), pp. 136–139.
  48. 48.
    G. D’Urso, C. Merla, Workpiece and electrode influence on micro-EDM drilling performance. Prec. Eng. 38(4), 903–914 (2014). Scholar
  49. 49.
    M.P. Jahan, M. Rahman, Y.S. Wong, Micro-electrical discharge machining (Micro-EDM): processes, varieties, and applications, in Comprehensive Materials Processing, vol. 11 (2014), pp. 333–371. Scholar
  50. 50.
    J. Fleischer, T. Masuzawa, J. Schmidt, M. Knoll, New applications for micro-EDM. J. Mat. Process. Technol. 149, 246–249 (2004). Scholar
  51. 51.
    D. Pham, S. Dimov, S. Bigot, A. Ivanov, K. Popov, Micro-EDM—recent developments and research issues. J. Mater. Process. Technol. 149(1–3), 50–57 (2004). Scholar
  52. 52.
    Z. Wang, Y. Zhang, W. Zhao, Study on key technologies of micro-EDM equipment, in Proceedings 4th Euspen International Conference. Glasgow, Scotland, May–June 2004, pp. 51–52Google Scholar
  53. 53.
    A. Moarrefzadeh, Study of electron generation in electron beam machining (EBM) process. Int. Rev. Mech. Eng. 5(6), 1064–1070 (2011)Google Scholar
  54. 54.
    S. Gao, H. Huang, Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. (2017). Scholar
  55. 55.
    K.H. Choi, J. Meijer, T. Masuzawa, D.H. Kim, Excimer laser micromachining for 3D microstructure. J. Mat. Process. Technol. 149, 561–566 (2004). Scholar
  56. 56.
    N.H. Rizvi, P. Apte, Developments in laser micro-machining techniques. J. Mater. Process. Technol. 127(2), 206–210 (2002). Scholar
  57. 57.
    J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, W. Schulz, Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51(2), 531–550 (2002). Scholar
  58. 58.
    D. Mi, W. Natsu, Simulation of micro ECM for complex-shaped holes, in Procedia CIRP, vol. 42 (2016), pp. 345–349. Scholar
  59. 59.
    Drexler, K. E. (1992). Nanosystems: Molecular machinery, manufacturing and computation. Advanced Materials (Vol. 5). Scholar
  60. 60.
    T.L. Cocker, V. Jelic, M. Gupta, S.J. Molesky, J.A.J. Burgess, G.D.L. Reyes, F.A. Hegmann, An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7(8), 620–625 (2013). Scholar
  61. 61.
    T.V. Vorburger, J.A. Dagata, G. Wilkening, K. Iizuka, Industrial uses of STM and AFM. Comput. Stand. Interf. 21(2), 196 (1999). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBIT MesraRanchiIndia
  2. 2.Department of Mechanical EngineeringNIT SilcharSilcharIndia

Personalised recommendations