Advertisement

Micro and Nano Machining—An Industrial Perspective

  • Nadeem FaisalEmail author
  • Divya Zindani
  • Kaushik Kumar
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Micro and nano-machining are of the most emerging and growing fields in today’s fast-paced world with a large number of important applications. Demands for miniaturized products and devices has led to the development and requirement of micro and nano-scaled machining and processes. Micro and nano-machining are required in a large number of fields like biotechnology, electronics, medicine, optics, aviation’s, automobile, and communication to name a few. However, with a large number of application and huge requirement in various fields, these machining techniques are sophisticated and complicated when compared to their conventional or traditional part. This chapter describes few such micro and nano machining techniques with their applications in industry.

Keywords

Micromachining Nano-machining Lithography Micro-EDM Turning Drilling Grinding Micro-USM Photolithography Micro-ECM Next-generation lithography (NGL) SCALPEL Micro-EBM 

References

  1. 1.
    X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005).  https://doi.org/10.1016/j.jmatprotec.2005.05.050CrossRefGoogle Scholar
  2. 2.
    E. Uhlmann, M. Röhner, M. Langmack, T.-M. Schimmelpfennig, Micromanuf. Eng. Technol. (2015).  https://doi.org/10.1016/B978-0-323-31149-6.00004-9CrossRefGoogle Scholar
  3. 3.
    L. Alting, F. Kimura, H.N. Hansen, G. Bissacco, Micro engineering. CIRP Ann. Manuf. Technol. 52(2), 635–657 (2003).  https://doi.org/10.1016/S0007-8506(07)60208-XCrossRefGoogle Scholar
  4. 4.
    N. Taniguchi, Current status in, and future trends of, ultra precision machining and ultrafine materials processing. CIRP Ann. Manuf. Technol. 32(2), 573–582 (1983).  https://doi.org/10.1016/S0007-8506(07)60185-1CrossRefGoogle Scholar
  5. 5.
    T. Masuzawa, State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000).  https://doi.org/10.1016/S0007-8506(07)63451-9CrossRefGoogle Scholar
  6. 6.
    M.J. Madou, Fundamentals of microfabrication: the science of miniaturization, in Fundamentals of Microfabrication: The Science of Miniaturization, vol. 49 (2002).  https://doi.org/10.1038/nmat2518CrossRefGoogle Scholar
  7. 7.
    J. Corbett, R.A. McKeown, G.N. Peggs, R. Whatmore, Nanotechnology: international developments and emerging products. CIRP Ann. Manuf. Technol. 49(2), 523–545 (2000).  https://doi.org/10.1016/S0007-8506(07)63454-4CrossRefGoogle Scholar
  8. 8.
    E.B. Brousseau, S.S. Dimov, D.T. Pham, Some recent advances in multi-material micro- and nano-manufacturing. Int. J. Adv. Manuf. Technol. 47(1–4), 161–180 (2010).  https://doi.org/10.1007/s00170-009-2214-5CrossRefGoogle Scholar
  9. 9.
    S.S. Dimov, C.W. Matthews, A. Glanfield, P. Dorrington, A roadmapping study in multi-material micro manufacture, in 4M 2006—Second International Conference on Multi-Material Micro Manufacture (2006), pp. xi–xxv.  https://doi.org/10.1016/B978-008045263-0/50001-5CrossRefGoogle Scholar
  10. 10.
    Y. Qin, A. Brockett, Y. Ma, A. Razali, J. Zhao, C. Harrison, D. Loziak, Micro-manufacturing: research, technology outcomes and development issues. Int. J. Adv. Manuf. Technol. 47(9–12), 821–837 (2010).  https://doi.org/10.1007/s00170-009-2411-2CrossRefGoogle Scholar
  11. 11.
    M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. (2013).  https://doi.org/10.1007/s00170-012-4605-2CrossRefGoogle Scholar
  12. 12.
    X. Liu, R.E. DeVor, S.G. Kapoor, K.F. Ehmann, The mechanics of machining at the microscale: assessment of the current state of the science. J. Manuf. Sci. Eng. 126(4), 666 (2004).  https://doi.org/10.1115/1.1813469CrossRefGoogle Scholar
  13. 13.
    S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179–196 (2000).  https://doi.org/10.1016/S1359-6454(99)00294-3CrossRefGoogle Scholar
  14. 14.
    K. Liu, B. Lauwers, D. Reynaerts, Process capabilities of micro-EDM and its applications. Int. J. Adv. Manuf. Technol. 47(1–4), 11–19 (2010).  https://doi.org/10.1007/s00170-009-2056-1CrossRefGoogle Scholar
  15. 15.
    K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, A. DeSilva, Micro and nano machining by electro-physical and chemical processes. CIRP Ann. Manuf. Technol. 55(2), 643–666 (2006).  https://doi.org/10.1016/j.cirp.2006.10.002CrossRefGoogle Scholar
  16. 16.
    X.M. Hu, Photolithography technology in electronic fabrication, in International Power, Electronics and Materials Engineering Conference, (Ipemec) (2015), pp. 849–856Google Scholar
  17. 17.
    N. Taniguchi, Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products (University Press, Oxford, 1996)Google Scholar
  18. 18.
    A.P.G. Robinson, R. Lawson, Materials and Processes for Next Generation Lithography. Frontiers of Nanoscience, vol. 11 (2016).  https://doi.org/10.1016/B978-0-08-096355-6.00001-5Google Scholar
  19. 19.
    J. Van Schoot, H. Schift, next-generation lithography—an outlook on EUV projection and nanoimprint. Adv. Opt. Technol. (2017).  https://doi.org/10.1515/aot-2017-0040CrossRefGoogle Scholar
  20. 20.
    V.Y. Banine, J.P.H. Benschop, H.G.C. Werij, Comparison of extreme ultraviolet sources for lithography applications. Microelectron. Eng. 53(1), 681–684 (2000).  https://doi.org/10.1016/S0167-9317(00)00404-4CrossRefGoogle Scholar
  21. 21.
    R. Lebert, L. Aschke, K. Bergmann, S. Düsterer, K. Gäbel, D. Hoffmann, C. Ziener, Preliminary results from key experiments on sources for EUV lithography. Microelectron. Eng. 57–58, 87–92 (2001).  https://doi.org/10.1016/S0167-9317(01)00533-0CrossRefGoogle Scholar
  22. 22.
    S.R. Mohanty, C. Cachoncinlle, C. Fleurier, E. Robert, J.M. Pouvesle, R. Viladrosa, R. Dussart, Recent progress in EUV source development at GREMI, in Microelectronic Engineering, vol. 61–62 (2002), pp. 179–185.  https://doi.org/10.1016/S0167-9317(02)00572-5CrossRefGoogle Scholar
  23. 23.
    S. Ohki, S. Ishihara, An overview of X-ray lithography. Microelectron. Eng. 30(1–4), 171–178 (1996). http://www.sciencedirect.com/science/article/B6V0W-4287HCF-3/2/e88a050eed138b8d9ca2af46b71c5911CrossRefGoogle Scholar
  24. 24.
    N. Mojarad, J. Gobrecht, Y. Ekinci, Interference lithography at EUV and soft X-ray wavelengths: principles, methods, and applications. Microelectron. Eng. 143, 55–63 (2015).  https://doi.org/10.1016/j.mee.2015.03.047CrossRefGoogle Scholar
  25. 25.
    Y. Desta, J. Goettert, X-Ray masks for LIGA microfabrication, in LIGA and its Applications, vol. 7 (2009), pp. 11–50.  https://doi.org/10.1002/9783527622573.ch2
  26. 26.
    Y. Cheng, B.Y. Shew, M.K. Chyu, P.H. Chen, Ultra-deep LIGA process and its applications, in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467468 (PART II), pp. 1192–1197 (2001).  https://doi.org/10.1016/S0168-9002(01)00606-4CrossRefGoogle Scholar
  27. 27.
    Y. Hirata, LIGA process—micromachining technique using synchrotron radiation lithography—and some industrial applications, in Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 208 (2003), pp. 21–26.  https://doi.org/10.1016/S0168-583X(03)00632-3CrossRefGoogle Scholar
  28. 28.
    C.K. Malek, V. Saile, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectron. J. (2004).  https://doi.org/10.1016/j.mejo.2003.10.003CrossRefGoogle Scholar
  29. 29.
    S. Okazaki, High resolution optical lithography or high throughput electron beam lithography: the technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. (2015).  https://doi.org/10.1016/j.mee.2014.11.015CrossRefGoogle Scholar
  30. 30.
    L.R. Harriott, S.D. Berger, C. Biddick, M.I. Blakey, S.W. Bowler, K. Brady, D. Windt, The SCALPEL proof of concept system. Microelectron. Eng. 35(1–4), 477–480 (1997)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. (2015).  https://doi.org/10.1016/j.mee.2015.02.042CrossRefGoogle Scholar
  32. 32.
    R.A. Lawes, Future trends in high-resolution lithography. Appl. Surf. Sci. 154, 519–526 (2000).  https://doi.org/10.1016/S0169-4332(99)00478-XCrossRefGoogle Scholar
  33. 33.
    J. Chae, S.S. Park, T. Freiheit, Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006).  https://doi.org/10.1016/j.ijmachtools.2005.05.015CrossRefGoogle Scholar
  34. 34.
    T. Sumitomo, H. Huang, L. Zhou, J. Shimizu, Nanogrinding of multi-layered thin film amorphous Si solar panels. Int. J. Mach. Tools Manuf. 51(10–11), 797–805 (2011).  https://doi.org/10.1016/j.ijmachtools.2011.07.001CrossRefGoogle Scholar
  35. 35.
    D. Huo, Micro-Cutting: Fundamentals and Applications (Wiley, London, 2013)Google Scholar
  36. 36.
    G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. CIRP Ann. Manuf. Technol. 52(2), 483–507 (2003).  https://doi.org/10.1016/S0007-8506(07)60200-5CrossRefGoogle Scholar
  37. 37.
    N. Ikawa, R.R. Donaldson, R. Komanduri, W. König, T.H. Aachen, P.A. McKeown, I.F. Stowers, Ultraprecision metal cutting—the past, the present and the future. CIRP Ann. Manuf. Technol. 40(2), 587–594 (1991).  https://doi.org/10.1016/S0007-8506(07)61134-2CrossRefGoogle Scholar
  38. 38.
    S. Shabouk, T. Nakamoto, Micro machining of diamond by ferrous material, in MHS 2001—Proceedings of 2001 International Symposium on Micromechatronics and Human Science (2001), pp. 35–40.  https://doi.org/10.1109/MHS.2001.965218
  39. 39.
    J. Xie, M.J. Luo, K.K. Wu, L.F. Yang, D.H. Li, Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro grooved tool. Int. J. Mach. Tools Manuf. 73, 25–36 (2013).  https://doi.org/10.1016/j.ijmachtools.2013.05.006CrossRefGoogle Scholar
  40. 40.
    H.N. Li, T.B. Yu, Z.X. Wang, L.Da Zhu, W.S. Wang, Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. Int. J. Mech. Sci. 126, 319–339 (2017).  https://doi.org/10.1016/j.ijmecsci.2016.11.016CrossRefGoogle Scholar
  41. 41.
    H.H. Gatzen, J. Chris Maetzig, Nanogrinding. Prec. Eng. 21, 134–139 (1997).  https://doi.org/10.1016/S0141-6359(97)00082-2CrossRefGoogle Scholar
  42. 42.
    M. Hasan, J. Zhao, Z. Jiang, A review of modern advancements in micro drilling techniques. J. Manuf. Process. (2017).  https://doi.org/10.1016/j.jmapro.2017.08.006CrossRefGoogle Scholar
  43. 43.
    S. Kumar, A. Dvivedi, P. Kumar, On tool wear in rotary tool micro-ultrasonic machining, in Minerals, Metals and Materials Series (2017), pp. 75–82.  https://doi.org/10.1007/978-3-319-52132-9_8CrossRefGoogle Scholar
  44. 44.
    K.P. Rajurkar, M.M. Sundaram, Process improvements in micro USM and micro EDM. Micro, Dec 2015Google Scholar
  45. 45.
    Z. Yu, C. Ma, C. An, J. Li, D. Guo, Prediction of tool wear in micro USM. CIRP Ann. Manuf. Technol. 61(1), 227–230 (2012).  https://doi.org/10.1016/j.cirp.2012.03.060CrossRefGoogle Scholar
  46. 46.
    D.V. Srikanth, M.S. Rao, Abrasive jet machining—research review. Int. J. Adv. Eng. Technol. 5(2), 18–24 (2014)Google Scholar
  47. 47.
    O.Y. Rogov, V.V. Artemov, M.V. Gorkunov, A.A. Ezhov, S.P. Palto, Fabrication of complex shape 3D photonic nanostructures by FIB lithography, in IEEE-NANO 2015—15th International Conference on Nanotechnology (2015), pp. 136–139.  https://doi.org/10.1109/NANO.2015.7388897
  48. 48.
    G. D’Urso, C. Merla, Workpiece and electrode influence on micro-EDM drilling performance. Prec. Eng. 38(4), 903–914 (2014).  https://doi.org/10.1016/j.precisioneng.2014.05.007CrossRefGoogle Scholar
  49. 49.
    M.P. Jahan, M. Rahman, Y.S. Wong, Micro-electrical discharge machining (Micro-EDM): processes, varieties, and applications, in Comprehensive Materials Processing, vol. 11 (2014), pp. 333–371.  https://doi.org/10.1016/B978-0-08-096532-1.01107-9CrossRefGoogle Scholar
  50. 50.
    J. Fleischer, T. Masuzawa, J. Schmidt, M. Knoll, New applications for micro-EDM. J. Mat. Process. Technol. 149, 246–249 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.02.012CrossRefGoogle Scholar
  51. 51.
    D. Pham, S. Dimov, S. Bigot, A. Ivanov, K. Popov, Micro-EDM—recent developments and research issues. J. Mater. Process. Technol. 149(1–3), 50–57 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.02.008CrossRefGoogle Scholar
  52. 52.
    Z. Wang, Y. Zhang, W. Zhao, Study on key technologies of micro-EDM equipment, in Proceedings 4th Euspen International Conference. Glasgow, Scotland, May–June 2004, pp. 51–52Google Scholar
  53. 53.
    A. Moarrefzadeh, Study of electron generation in electron beam machining (EBM) process. Int. Rev. Mech. Eng. 5(6), 1064–1070 (2011)Google Scholar
  54. 54.
    S. Gao, H. Huang, Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. (2017).  https://doi.org/10.1007/s11465-017-0410-9CrossRefGoogle Scholar
  55. 55.
    K.H. Choi, J. Meijer, T. Masuzawa, D.H. Kim, Excimer laser micromachining for 3D microstructure. J. Mat. Process. Technol. 149, 561–566 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.03.005CrossRefGoogle Scholar
  56. 56.
    N.H. Rizvi, P. Apte, Developments in laser micro-machining techniques. J. Mater. Process. Technol. 127(2), 206–210 (2002).  https://doi.org/10.1016/S0924-0136(02)00143-7CrossRefGoogle Scholar
  57. 57.
    J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, W. Schulz, Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51(2), 531–550 (2002).  https://doi.org/10.1016/S0007-8506(07)61699-0CrossRefGoogle Scholar
  58. 58.
    D. Mi, W. Natsu, Simulation of micro ECM for complex-shaped holes, in Procedia CIRP, vol. 42 (2016), pp. 345–349.  https://doi.org/10.1016/j.procir.2016.02.186CrossRefGoogle Scholar
  59. 59.
    Drexler, K. E. (1992). Nanosystems: Molecular machinery, manufacturing and computation. Advanced Materials (Vol. 5).  https://doi.org/10.1002/adma.19930051119CrossRefGoogle Scholar
  60. 60.
    T.L. Cocker, V. Jelic, M. Gupta, S.J. Molesky, J.A.J. Burgess, G.D.L. Reyes, F.A. Hegmann, An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7(8), 620–625 (2013).  https://doi.org/10.1038/nphoton.2013.151CrossRefGoogle Scholar
  61. 61.
    T.V. Vorburger, J.A. Dagata, G. Wilkening, K. Iizuka, Industrial uses of STM and AFM. Comput. Stand. Interf. 21(2), 196 (1999).  https://doi.org/10.1016/S0920-5489(99)92292-4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBIT MesraRanchiIndia
  2. 2.Department of Mechanical EngineeringNIT SilcharSilcharIndia

Personalised recommendations