Skip to main content

In Situ Friction Tests in a Transmission Electron Microscope

  • Chapter
  • First Online:
Advanced Analytical Methods in Tribology

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 1179 Accesses


Post mortem characterization techniques are essential for the understanding of the lubrication mechanisms of complex tribological systems. The information obtained using these techniques can be used to propose hypothesis of mechanisms that have then to be definitively validated by probing the interfacial material in real time during the friction test. To go further in the understanding of the action modes of some tribological systems, it is important to set up an analytical methodology using in situ experimental techniques in order to (i) probe directly the behavior of the interfacial material in the contact zone and (ii) dissociate, for a better understanding, the different components of the tribological stress (pressure and shear). There are several techniques that combine mechanical stress and in situ analysis (Raman tribology, Infra-Red tribology, EXAFS under pressure …). However, the most interesting techniques are certainly those that permit a visualization of the contact area in real time area during the friction test, down to a nanometer scale. The objective of this chapter is to present through some examples the potential of in situ friction tests done inside a transmission electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. J.M. Howe, H. Mori, Z.L. Wang, In situ high-resolution transmission electron microscopy in the study of nanomaterials and properties. MRS Bull. 33(2), 115–121 (2008)

    Article  CAS  Google Scholar 

  2. A.M. Minor, J.W. Morris Jr., E.A. Stach, Quantitative in situ nanoindentation in an electron microscope. App. Phys. Lett. 79, 1625–1627 (2001)

    Article  CAS  Google Scholar 

  3. E.A. Stach, T. Freeman, A.M. Minor, D.K. Owen, J. Cumings, M.A. Wall, T. Chraska, R. Hull, J.W. Morris Jr., A. Zettl, U. Dahmen, Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507–517 (2001)

    CAS  Google Scholar 

  4. N. Li, J. Wang, J.Y. Huang, A. Misra, X. Zhang, In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363–366 (2010)

    Article  CAS  Google Scholar 

  5. Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. 61, 1025–1030 (2000)

    CAS  Google Scholar 

  6. X. Han, K. Zheng, Y.F. Zhang, X. Zhang, Z. Zhang, Z.L. Wang, Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007)

    Article  CAS  Google Scholar 

  7. A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, In situ observation of size scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22, 265712 (2011)

    Article  CAS  Google Scholar 

  8. J. Deneen, W.M. Mook, A.M. Minor, W.W. Gerberich, C.B. Carter, In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477–4483 (2006)

    Article  CAS  Google Scholar 

  9. Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A. Syed Asif, O.L. Warren, D.C. Chrzan, A.M. Minor, A.P. Alivisatos, Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mat. 7, 947–952 (2008)

    Article  CAS  Google Scholar 

  10. A.J. Lockwood, B.J. Inkson, In situ TEM nanoindentation and deformation of Si nanoparticle clusters. J. Phys. D Appl. Phys. 42, 035410 (2009)

    Article  Google Scholar 

  11. C.E. Carlton, P.J. Ferreira, In situ TEM nanoindentation of nanoparticles. Micron 43, 1134–1139 (2012)

    Article  CAS  Google Scholar 

  12. I. Lahouij, F. Dassenoy, L. De Knoop, J.M. Martin, B. Vacher, In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

    Article  CAS  Google Scholar 

  13. I. Lahouij, F. Dassenoy, B. Vacher, J.M. Martin, Real time imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012)

    Article  CAS  Google Scholar 

  14. I. Lahouij, Ph.D. thesis, Ecole Centrale de Lyon, France (2013)

    Google Scholar 

  15. I. Lahouij, B. Vacher, J.M. Martin, F. Dassenoy, IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear 296, 558–567 (2012)

    Article  CAS  Google Scholar 

  16. I. Lahouij, B. Vacher, F. Dassenoy, Direct observation by in situ TEM of the behavior of IF-MoS2 nanoparticles during sliding tests. Lubr. Sci. 36(3), 163–173 (2014)

    Article  Google Scholar 

  17. I. Jenei, F. Dassenoy, Friction coefficient measured on a single WS2 nanoparticle: an in situ transmission electron microscope experiment. Tribol. Lett. 65, 86 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fabrice Dassenoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dassenoy, F. (2018). In Situ Friction Tests in a Transmission Electron Microscope. In: Dienwiebel, M., De Barros Bouchet, MI. (eds) Advanced Analytical Methods in Tribology. Microtechnology and MEMS. Springer, Cham.

Download citation

Publish with us

Policies and ethics