Skip to main content

Semantic Localization of a Robot in a Real Home

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 855)

Abstract

In social robotics, it is important that a mobile robot knows where it is because it provides a starting point for other activities such as moving from one room to another. As a contribution to solving this problem in the field of the semantic location of the mobile robot, we pro- pose to implement a methodology of recognition and scene learning in a real domestic environment. For this purpose, we used images from five different residences to create a dataset with which the base model was trained. The effectiveness of the implemented base model is evaluated in different scenarios. When the accuracy of the site identification decreases, the user provides feedback to the robot so that it can process the information collected from the new environment and re-identify the current location. The results obtained reinforce the need to acquire more knowledge when the environment is not recognizable by the pre-trained model.

Keywords

  • Robotics
  • Deep learning
  • Semantic localization
  • CNN training
  • Neural networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99885-5_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99885-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://github.com/spotify/annoy.

References

  1. Oore, S., Hinton, G., Dudek, G.: A mobile robot that learns its place. Neural Comput. 9(3), 683–699 (1997)

    CrossRef  Google Scholar 

  2. Koenig, S., Simmons, R.: Xavier: a robot navigation architecture based on partially observable Markov decision process models. In: Kortenkamp, D., Bonasso, R., Murphy, R. (eds.) Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122. MIT-Press, Cambridge (1998)

    Google Scholar 

  3. Dillmann, R., Rogalla, O., Ehrenmann, M., Zöliner, R., Bordegoni, M.: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm. In: Hollerbach, J.M., Koditschek, D.E. (eds.) Robotics Research, pp. 229–238. Springer, London (2000)

    CrossRef  Google Scholar 

  4. Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 637–642 (2002)

    Google Scholar 

  5. Kuipers, B., Beeson, P.: Bootstrap learning for place recognition. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2002)

    Google Scholar 

  6. Althaus, P., Christensen, H.: Behaviour coordination in structured environments. Adv. Robot. 17(7), 657–674 (2003)

    CrossRef  Google Scholar 

  7. Pronobis, A., Mozos, O.M., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. Int. J. Robot. Res. 29(2–3), 298–320 (2010). https://doi.org/10.1177/0278364909356483

    CrossRef  Google Scholar 

  8. Stückler, J., Behnke, S.: Improving people awareness of service robots by semantic scene knowledge. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010: Robot Soccer World Cup XIV, pp. 157–168. Springer, Heidelberg (2011). ISBN: 978-3-642-20217-9

    CrossRef  Google Scholar 

  9. Lim, H., Sinha, S.: Towards real-time semantic localization. In: ICRA Workshop on Semantic Perception (2012)

    Google Scholar 

  10. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015)

    CrossRef  MathSciNet  Google Scholar 

  11. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 487–495. Curran Associates, Inc. (2014), http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf

  12. Goeddel, R., Olson, E.: Learning semantic place labels from occupancy grids using CNNs. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3999–4004, October 2016

    Google Scholar 

  13. Martinez-Gomez, J., Gimenez, V.M., Cazorla, M., Garcia-Varea, I.: Semantic Localization in the PCL library. Robot. Auton. Syst. 75(Part B), 641–648 (2016). http://www.sciencedirect.com/science/article/pii/S0921889015001943

    CrossRef  Google Scholar 

  14. Lowry, S., Sünderhauf, N., Newman, P., Leonard, J.J., Cox, D., Corke, P., Milford, M.J.: Visual place recognition: a survey. IEEE Trans. Robot. 32(1), 1–19 (2016). https://doi.org/10.1109/TRO.2015.2496823

    CrossRef  Google Scholar 

  15. Schünberger, J.L., Pollefeys, M., Geiger, A., Sattler, T.: Semantic visual localization. CoRR, abs/1712.05773,2017. http://arxiv.org/abs/1712.05773

  16. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  17. Ma, S., Liu, Q.: Semantic localization. In: Encyclopedia with Semantic Computing and Robotic Intelligence, vol. 01, no. 01 (2017). https://doi.org/10.1142/S242503841630010X

    CrossRef  Google Scholar 

  18. Romero-González, C., Martínez-Gómez, J., García-Varea, I., Rodríguez-Ruiz, L.: On robot indoor scene classification based on descriptor quality and efficiency. Expert Syst. Appl. 79, 181–193 (2017). http://www.sciencedirect.com/science/article/pii/S0957417417301318

    CrossRef  Google Scholar 

  19. Young, J., et al.: Making sense of indoor spaces using semantic web mining and situated robot perception. In: Blomqvist, E., Hose, K., Paulheim, H., Lawrynowicz, A., Ciravegna, F., Hartig, O. (eds.) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2014. Lecture Notes in Computer Science, vol. 10577. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-439

    CrossRef  Google Scholar 

  20. Rosa, S., Lu, X., Wen, H., Trigoni, N.: Leveraging user activities and mobile robots for semantic mapping and user localization. In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2017), pp. 267–268. ACM, New York (2017). https://doi.org/10.1145/3029798.3038343

  21. Cruz, E., Rangel, J.C., Cazorla, M.: Robot semantic localization through CNN descriptors. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017: Third Iberian Robotics Conference, pp. 567–578. Springer, Cham (2018). https://doi.org/10.1145/3215525.3215526

    CrossRef  Google Scholar 

  22. Rosa, S., Patané, A., Lu, X., Trigoni, N.: CommonSense: collaborative learning of scene semantics y robots and humans. In: IoPARTS 2018: 1st International Workshop on Internet of People, Assistive Robots and ThingS, Munich, Germany, 10 June 2018, 6 pages. ACM, New York (2018). https://doi.org/10.1145/3215525.3215526

  23. Cruz, E., Rangel, J.C., Gómez-Donoso, F., Bauer, Z., Cazorla, M., Garcia-Rodriguez, J.: Finding the place: how to train and use convolutional neural networks for a dynamically learning robot. In: 2018 International Joint Conference on Neural Networks, IJCNN, pp. 3655–3662, July 2018. ISBN: 978-1-5090-6014-6

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Government TIN2016-76515R Grant, supported with Feder funds. Edmanuel Cruz is funded by a Panamenian grant for PhD studies IFARHU & SENACYT 270-2016-207. This work has also been supported by a Spanish grant for PhD studies ACIF/2017/243. Thanks to Nvidia also for the generous donation of a Titan Xp and a Quadro P6000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmanuel Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cruz, E., Bauer, Z., Rangel, J.C., Cazorla, M., Gomez-Donoso, F. (2019). Semantic Localization of a Robot in a Real Home. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_1

Download citation