Abstract
In social robotics, it is important that a mobile robot knows where it is because it provides a starting point for other activities such as moving from one room to another. As a contribution to solving this problem in the field of the semantic location of the mobile robot, we pro- pose to implement a methodology of recognition and scene learning in a real domestic environment. For this purpose, we used images from five different residences to create a dataset with which the base model was trained. The effectiveness of the implemented base model is evaluated in different scenarios. When the accuracy of the site identification decreases, the user provides feedback to the robot so that it can process the information collected from the new environment and re-identify the current location. The results obtained reinforce the need to acquire more knowledge when the environment is not recognizable by the pre-trained model.
Keywords
- Robotics
- Deep learning
- Semantic localization
- CNN training
- Neural networks
This is a preview of subscription content, access via your institution.
Buying options




Notes
References
Oore, S., Hinton, G., Dudek, G.: A mobile robot that learns its place. Neural Comput. 9(3), 683–699 (1997)
Koenig, S., Simmons, R.: Xavier: a robot navigation architecture based on partially observable Markov decision process models. In: Kortenkamp, D., Bonasso, R., Murphy, R. (eds.) Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122. MIT-Press, Cambridge (1998)
Dillmann, R., Rogalla, O., Ehrenmann, M., Zöliner, R., Bordegoni, M.: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm. In: Hollerbach, J.M., Koditschek, D.E. (eds.) Robotics Research, pp. 229–238. Springer, London (2000)
Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 637–642 (2002)
Kuipers, B., Beeson, P.: Bootstrap learning for place recognition. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2002)
Althaus, P., Christensen, H.: Behaviour coordination in structured environments. Adv. Robot. 17(7), 657–674 (2003)
Pronobis, A., Mozos, O.M., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. Int. J. Robot. Res. 29(2–3), 298–320 (2010). https://doi.org/10.1177/0278364909356483
Stückler, J., Behnke, S.: Improving people awareness of service robots by semantic scene knowledge. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010: Robot Soccer World Cup XIV, pp. 157–168. Springer, Heidelberg (2011). ISBN: 978-3-642-20217-9
Lim, H., Sinha, S.: Towards real-time semantic localization. In: ICRA Workshop on Semantic Perception (2012)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015)
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 487–495. Curran Associates, Inc. (2014), http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf
Goeddel, R., Olson, E.: Learning semantic place labels from occupancy grids using CNNs. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3999–4004, October 2016
Martinez-Gomez, J., Gimenez, V.M., Cazorla, M., Garcia-Varea, I.: Semantic Localization in the PCL library. Robot. Auton. Syst. 75(Part B), 641–648 (2016). http://www.sciencedirect.com/science/article/pii/S0921889015001943
Lowry, S., Sünderhauf, N., Newman, P., Leonard, J.J., Cox, D., Corke, P., Milford, M.J.: Visual place recognition: a survey. IEEE Trans. Robot. 32(1), 1–19 (2016). https://doi.org/10.1109/TRO.2015.2496823
Schünberger, J.L., Pollefeys, M., Geiger, A., Sattler, T.: Semantic visual localization. CoRR, abs/1712.05773,2017. http://arxiv.org/abs/1712.05773
Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Ma, S., Liu, Q.: Semantic localization. In: Encyclopedia with Semantic Computing and Robotic Intelligence, vol. 01, no. 01 (2017). https://doi.org/10.1142/S242503841630010X
Romero-González, C., Martínez-Gómez, J., García-Varea, I., Rodríguez-Ruiz, L.: On robot indoor scene classification based on descriptor quality and efficiency. Expert Syst. Appl. 79, 181–193 (2017). http://www.sciencedirect.com/science/article/pii/S0957417417301318
Young, J., et al.: Making sense of indoor spaces using semantic web mining and situated robot perception. In: Blomqvist, E., Hose, K., Paulheim, H., Lawrynowicz, A., Ciravegna, F., Hartig, O. (eds.) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2014. Lecture Notes in Computer Science, vol. 10577. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-439
Rosa, S., Lu, X., Wen, H., Trigoni, N.: Leveraging user activities and mobile robots for semantic mapping and user localization. In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2017), pp. 267–268. ACM, New York (2017). https://doi.org/10.1145/3029798.3038343
Cruz, E., Rangel, J.C., Cazorla, M.: Robot semantic localization through CNN descriptors. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017: Third Iberian Robotics Conference, pp. 567–578. Springer, Cham (2018). https://doi.org/10.1145/3215525.3215526
Rosa, S., Patané, A., Lu, X., Trigoni, N.: CommonSense: collaborative learning of scene semantics y robots and humans. In: IoPARTS 2018: 1st International Workshop on Internet of People, Assistive Robots and ThingS, Munich, Germany, 10 June 2018, 6 pages. ACM, New York (2018). https://doi.org/10.1145/3215525.3215526
Cruz, E., Rangel, J.C., Gómez-Donoso, F., Bauer, Z., Cazorla, M., Garcia-Rodriguez, J.: Finding the place: how to train and use convolutional neural networks for a dynamically learning robot. In: 2018 International Joint Conference on Neural Networks, IJCNN, pp. 3655–3662, July 2018. ISBN: 978-1-5090-6014-6
Acknowledgements
This work has been supported by the Spanish Government TIN2016-76515R Grant, supported with Feder funds. Edmanuel Cruz is funded by a Panamenian grant for PhD studies IFARHU & SENACYT 270-2016-207. This work has also been supported by a Spanish grant for PhD studies ACIF/2017/243. Thanks to Nvidia also for the generous donation of a Titan Xp and a Quadro P6000.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cruz, E., Bauer, Z., Rangel, J.C., Cazorla, M., Gomez-Donoso, F. (2019). Semantic Localization of a Robot in a Real Home. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-99885-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99884-8
Online ISBN: 978-3-319-99885-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)