Advertisement

A-Musing with Chess and the Eight Queens Math Puzzle: Looking for Connections Between Problem-Solving, Technology, Creativity, and Affect in Mathematics Education

Chapter
  • 580 Downloads
Part of the Research in Mathematics Education book series (RME)

Abstract

Mathematical recreations have continued, since antiquity, to attract not only amateurs who find numerous opportunities to enjoy solving challenging problems but also renowned mathematicians. Using examples of chessboard puzzles and, in particular, the Eight Queens problem, I analyse, from historical, as well as modern perspectives, how technology, creativity, and affect ignite and shape a collective interest in solving mathematical problems. While looking at ingenious methods of searching for solutions of the puzzle and its variations and generalizations developed by mathematicians and, more recently, computer scientists, the chapter explores the educational value of chess puzzles for learners of all ages, starting with elementary school, to instil a culture of mathematical investigation, foster curiosity and perseverance and creative thinking, and, in relation to affect, help to make mathematics learning an intriguing and enjoyable venture.

Keywords

Chessboard puzzles Mathematical recreations Interest-based activities Investigative problem-solving approach 

References

  1. Applebaum, M., & Freiman, V. (2014). It all starts with the Bachet’s game. Mathematics Teacher, 241, 22–26.Google Scholar
  2. Bachet, Sr., & de Méziriac, C. G. (1884). Problèmes plaisans et délectables, qui se font par les nombres. (5e édition). ParisGoogle Scholar
  3. Ball, W. W. R., & Coxeter, H. S. M. (1940). Mathematical recreations and essays (11th ed.). London, UK: Macmillan & Co.Google Scholar
  4. Bellavitis, G. (1861). Q. 251 Disposizione sullo scacchiere di otto regine. Atti dell’ Istituto Veneto, 3(6), 434–435.Google Scholar
  5. Campbell, P. (1977). Gauss and the eight queens problem: A study in miniature of the propagation of historical error. Historia Mathematica, 4, 397–404.CrossRefGoogle Scholar
  6. Cretaine, A. (1865). Etudes sur le Problème de la Marche du Cavalier au Jeu des Echecs et Solution du Problème des Huit Dames Paris (Libraries Rue des Bons Enfants 28, Ancienne Maison Silvestre).Google Scholar
  7. Crook, J. F. (2009). A pencil-and-paper algorithm for solving Sudoku puzzles. Notices of the AMS, 56(4), 460–468.Google Scholar
  8. Danesi, M. (2009). The Appeal of Sudoku. Why is Sudoku an obsession? Psychology Today, https://www.psychologytoday.com/us/blog/brain-workout/200906/the-appeal-sudoku.
  9. Dijkstra, E. W. (1971). EWD316: A short introduction to the art of programming. https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD316.8.html
  10. Euler, L. (1759). Solution d’une question curieuse que ne paroit soumise à aucune analyse. Mémoires de l’académie des sciences de Berlin, 15, 310–337.Google Scholar
  11. Euler L., (1766). Memoire de Berlin for 1759. Berlin, pp. 310–337.Google Scholar
  12. Freiman, V. (2006). Problems to discover and to boost mathematical talent in early grades: A challenging situations approach. The Mathematics Enthusiast, 3(1), 51–75.Google Scholar
  13. Freiman, V. (2018). Complex and open-ended tasks to enrich mathematical experiences of kindergarten students. In M. Singer (Ed.), Mathematical creativity and mathematical giftedness: Enhancing creative capacities in mathematically promising students (373–404). ICME-13 monographs. Cham, Switzerland: Springer International Publishing.Google Scholar
  14. Freiman, V., & Tassell, J. (Eds.). (2018, in press). Creativity and technology in mathematics education. Series Mathematics Education in the Digital Era. Cham, Switzerland: Springer.Google Scholar
  15. Glaisher, J. W. L. (1874). On the problem of the eight queens. Philosophical Magazine, 48(4), 457–467.Google Scholar
  16. Gomez, C., & Novak, D. (2014). Oki-Doku: Number puzzles. Teaching Children Mathematics, 20(7), 436–442.CrossRefGoogle Scholar
  17. Gunther, S. (1874). Zur mathematischen Theorie des Schachbretts. Archiv der Mathematik und Physik, 56, 281–292.Google Scholar
  18. Knuth, D. E. (1968). Art of computer programming, volume 4B, fascicle 5: The: Mathematical preliminaries redux; backtracking; dancing links. Boston: Addison-Wesley.Google Scholar
  19. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: The University of Chicago Press.Google Scholar
  20. Kulkarni, D. (2013). Recreational and educational value of math puzzles. Edutopia: Game-based learning. https://www.edutopia.org/blog/recreational-educational-value-math-puzzles-deepak-kulkarni
  21. Lehman, W. (1862). “Doscendo Discimus”: Solution to Eight Queen’s Problem. In: Loewenthal, J. (Ed.). The Chess Congress of 1862: A Collection of Games and a selection of the problems sent in the competition. London: Britsh Chess Association.Google Scholar
  22. Lionnet, F. J. E. (1852). Question 251. Nouvelles Annales de Mathématiques, 11, 114.Google Scholar
  23. Lionnet, F. J. E. (1869). Question 963. Nouvelles Annales de Mathématiques, 28, 560.Google Scholar
  24. Lucas (1891). Récréations mathématiques: Les traversees. Les ponts. Les labyrinthes. Les reines. Le solitaire. la numération. Le baguenaudier. Le taquin. 2e édition. Paris: Gauthier-Villars et fils.Google Scholar
  25. Murawska, J. M. (2018). KenKen Puzzles for Developing Number Sense AndPositive Mathematics Identify in Elementary School. Success in High-Need Schools Journal, 14(1), 21–25.Google Scholar
  26. Nauck, F. (1850). Schach: Eine in das Gebiet der Mathematik fallende Aufgabe von Herrn Dr. Nauck in Schleusingen. Illustrirte Zeitung, 14(361), 352.Google Scholar
  27. Nickerson, R. (2011). Mathematical reasoning: Patterns, problems, conjectures, and proofs. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Taylor & Francis Group.CrossRefGoogle Scholar
  28. Parmentier (Le Général). (1884). Problème de huit reines. In Compte rendu de l’association française pour l’avancement des sciences (Vol. 12, pp. 197–213). Paris: Association française pour l’avancement des sciences.Google Scholar
  29. Petkovic, M. (2009). Famous puzzles of great mathematicians. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  30. Reiter, H. B., Thornton, J., & Vennebush, G. P. (2013). Using KenKen to build reasoning skills. Mathematics Teacher, 107(5), 341–347.CrossRefGoogle Scholar
  31. Stewart, I. (1997). Mathematical recreations: Knight’s tours. Scientific American, 276, 102–104.CrossRefGoogle Scholar
  32. Tabesh, Y. (2016). Digital pedagogy in mathematical learning. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited lectures from the 13th international congress on mathematical education. ICME-13 monographs. Cham, Switzerland: Springer International Publishing.Google Scholar
  33. von Jaenisch, C. F. (1862). Traité des Applications de 1’Analyse Mathematique au Jeu des Echecs (Vol. I). St. Petersburg (Dufour): Lange.Google Scholar
  34. Wildenberg, G. (2002). Heuristics as an aid to backtracking, a classroom project. Journal of Computing Sciences in Colleges, 17(6), 39–44.Google Scholar
  35. Wirth, N. (1985). Algorithms and data structures. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  36. Yeager, D. S., & Dweck, C. S. (2012). Mindsets that promote resilience: When students believe that personal characteristics can be developed. Educational Psychologist, 47, 302–314.  https://doi.org/10.1080/00461520.2012.722805CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université de MonctonMonctonCanada

Personalised recommendations