Faulty or Malicious Anchor Detection Criteria for Distance-Based Localization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10707)


The reliability of the localization of Wireless Sensor Networks in presence of errors or malicious data alteration is a challenging research topic: recently, several studies have been carried out to identify, remove or neglect the faulted/malicious nodes. This paper addresses the capability of a network, composed of range-capable nodes and anchor nodes (i.e., nodes that know their position), to detect a faulty or malicious alteration of the information provided by the anchor nodes. Specifically, we consider biases for the position of anchor nodes that alter the localization of the network, and we provide conditions under which the nodes are able to detect the event, with particular reference to two distance-based localization algorithms, namely trilateration and Shadow Edge Localization Algorithm.


  1. 1.
    Eren, T., et al.: Rigidity, computation, and randomization in network localization. In: INFOCOM, : Twenty-Third AnnualJoint Conference of the IEEE Computer and Communications Societies 2004, vol. 4, pp. 2673–2684. IEEE (2004)Google Scholar
  2. 2.
    Connelly, R.: Generic global rigidity. Discret. Comput. Geom. 33(4), 549–563 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D., Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678 (2006)CrossRefGoogle Scholar
  4. 4.
    Oliva, G., et al.: Network localization by shadow edges. In: 2013 European Control Conference (ECC), pp. 2263–2268. IEEE (2013)Google Scholar
  5. 5.
    Oliva, G., et al.: Exploiting routing information in wireless sensor networks localization. In: IEEE 2nd 2013 Network Science Workshop (NSW), pp. 66–73. IEEE (2013)Google Scholar
  6. 6.
    Pascucci, F., Panzieri, S., Oliva, G., Setola, R.: Simultaneous localization and routing in sensor networks using shadow edges. Intell. Auton. Veh. 8(1), 199–204 (2013)zbMATHGoogle Scholar
  7. 7.
    Oliva, G., Panzieri, S., Pascucci, F., Setola, R.: Sensor network localization: extending trilateration via shadow edges. IEEE Trans. Autom. Control. 60(10), 2752–2755 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kuriakose, J., Amruth, V., Nandhini, S., Abhilash, V.: Sequestration of malevolent anchor nodes in wireless sensor networks using mahalanobis distance, CoRR (2014)Google Scholar
  9. 9.
    Kashani, M.A.A., Mahriyar, H.: A new method for preventing wormhole attacks in wireless sensor networks. Adv. Environ. Biol. 8(10), 1339–1346 (2014)Google Scholar
  10. 10.
    García-Otero, M., Población-Hernández, A.: Secure neighbor discovery in wireless sensor networks using range-free localization techniques. Int. J. Distrib. Sens. Netw. 8(11), 763182 (2012)CrossRefGoogle Scholar
  11. 11.
    Lazos, L., Poovendran, R., Čapkun, S.: Rope: robust position estimation in wireless sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 43 IEEE Press (2005)Google Scholar
  12. 12.
    Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE J. Sel. Areas Commun. 24(2), 221–232 (2006)CrossRefGoogle Scholar
  13. 13.
    Lazos, L., Poovendran, R.: Hirloc: high-resolution robust localization for wireless sensor networks. IEEE J. Sel. Areas Commun. 24(2), 233–246 (2006)CrossRefGoogle Scholar
  14. 14.
    Niu, Y., Gao, D., Gao, S., Chen, P.: A robust localization in wireless sensor networks against wormhole attack. J. Netw. 7(1), 187–194 (2012)Google Scholar
  15. 15.
    Prakruthi, M., Varalatchoumy, M.: Detecting malicious beacon nodes for secure localization in distributed wireless networks (2011)Google Scholar
  16. 16.
    Jacobs, D.J., Hendrickson, B.: An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137(2), 346–365 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. Carnegie-Mellon University, Department of Computer Science, Pittsburgh (1980)Google Scholar
  19. 19.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)Google Scholar
  20. 20.
    Matula, D.W., Sokal, R.R.: Properties of gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geogr. Anal. 12(3), 205–222 (1980)CrossRefGoogle Scholar
  21. 21.
    Abate, V., Adacher, L., Pascucci, F.: Situation awareness in critical infrastructures. Int. J. Simul. Process Model. 9(1–2), 92–103 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of EngineeringUniversity Rome TreRomeItaly
  2. 2.Complex Systems and Security LaboratoryUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations