Skip to main content

Assessing Urban Rail Transit Systems Vulnerability: Metrics vs. Interdiction Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10707))

Abstract

Urban rail transit systems are highly vulnerable to disruptions, including accidental failures, natural disasters and terrorist attacks. Due to the crucial role that railway infrastructures play in economic development, productivity and social well-being of communities, evaluating their vulnerability and identifying their most critical components is of paramount importance. Two main approaches can be deployed to assess transport infrastructure vulnerabilities: vulnerability metrics and interdiction models. In this paper, we compare these two approaches and apply them to the Central London Tube to identify the most critical stations with respect to accessibility, efficiency and flow measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discret. Appl. Math. 161(16), 2349–2360 (2013)

    Article  MathSciNet  Google Scholar 

  2. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MathSciNet  Google Scholar 

  3. Balijepalli, C., Oppong, O.: Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. J. Transp. Geogr. 39, 145–155 (2014)

    Article  Google Scholar 

  4. 7/7 London bombings: What happened on 7 July 2005? (2015). CBBC Newsround. Accessed 23 June 2017

    Google Scholar 

  5. Cappanera, P., Scaparra, M.P.: Optimal allocation of protective resources in shortest-path networks. Transp. Sci. 45(1), 64–80 (2011)

    Article  Google Scholar 

  6. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)

    Article  Google Scholar 

  7. Esposito Amideo, A., Scaparra, M.P.: A synthesis of optimization approaches for tackling critical information infrastructure survivability. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 75–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_7

    Chapter  Google Scholar 

  8. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Math. Program. 13(1), 116–118 (1977)

    Article  MathSciNet  Google Scholar 

  9. Granata, D., Steeger, G., Rebennack, S.: Network interdiction via a critical disruption path: branch-and-price algorithms. Comput. Oper. Res. 40(11), 2689–2702 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gillett, F.: London Bridge station: commuters warned of major disruption on trains for rest of evening. Evening Standard (2017). Accessed 23 June 2017

    Google Scholar 

  11. Harley, N.: Fire at Euston Station continues to cause rail disruption. The Telegraph (2017). Accessed 23 June 2017

    Google Scholar 

  12. Jenelius, E., Petersen, T., Mattsson, L.G.: Importance and exposure in road network vulnerability analysis. Transp. Res. Part A: Policy Pract. 40(7), 537–560 (2006)

    Google Scholar 

  13. Kim, I.Y., de Weck, O.L.: Adaptive weighted-sum method for bi-objective optimization: pareto front generation. Struct. Multidiscip. Optim. 29(2), 149–158 (2005)

    Article  Google Scholar 

  14. Mach, K., Mastrandrea, M.: In: Field, C.B., Barros, V.R. (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge and New York (2014)

    Google Scholar 

  15. Matisziw, T.C., Murray, A.T.: Modeling st path availability to support disaster vulnerability assessment of network infrastructure. Comput. Oper. Res. 36(1), 16–26 (2009)

    Article  Google Scholar 

  16. Murray, A.T.: An overview of network vulnerability modeling approaches. GeoJournal 78(2), 209–221 (2013)

    Article  Google Scholar 

  17. Office of Rail and Road: Statistical releases (2017). Accessed 23 June 2017

    Google Scholar 

  18. Ouyang, M., Zhao, L., Hong, L., Pan, Z.: Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability. Reliab. Eng. Syst. Saf. 123, 38–46 (2014)

    Article  Google Scholar 

  19. Scott, D.M., Novak, D.C., Aultman-Hall, L., Guo, F.: Network robustness index: a new method for identifying critical links and evaluating the performance of transportation networks. J. Transp. Geogr. 14(3), 215–227 (2006)

    Article  Google Scholar 

  20. Starita, S., Scaparra, M.P.: Passenger railway network protection: a model with variable post-disruption demand service. J. Oper. Res. Soc. 69(4), 1–18 (2017)

    Google Scholar 

  21. Sullivan, J., Aultman-Hall, L., Novak, D.: A review of current practice in network disruption analysis and an assessment of the ability to account for isolating links in transportation networks. Transp. Lett. 1(4), 271–280 (2009)

    Article  Google Scholar 

  22. Sun, D.J., Zhao, Y., Lu, Q.C.: Vulnerability analysis of urban rail transit networks: a case study of Shanghai, China. Sustainability 7(6), 6919–6936 (2015)

    Article  Google Scholar 

  23. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wang, J.W., Rong, L.L.: Cascade-based attack vulnerability on the US power grid. Saf. Sci. 47(10), 1332–1336 (2009)

    Article  Google Scholar 

  25. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annunziata Esposito Amideo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starita, S., Esposito Amideo, A., Scaparra, M.P. (2018). Assessing Urban Rail Transit Systems Vulnerability: Metrics vs. Interdiction Models. In: D'Agostino, G., Scala, A. (eds) Critical Information Infrastructures Security. CRITIS 2017. Lecture Notes in Computer Science(), vol 10707. Springer, Cham. https://doi.org/10.1007/978-3-319-99843-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99843-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99842-8

  • Online ISBN: 978-3-319-99843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics