Advertisement

Hardware Implementation of a Biomimicking Hybrid CA

  • Menelaos Madikas
  • Michail-Antisthenis TsompanasEmail author
  • Nikolaos Dourvas
  • Georgios Ch. Sirakoulis
  • Jeff Jones
  • Andrew Adamatzky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11115)

Abstract

A hybrid model, combining a Cellular Automaton (CA) and a multi-agent system, was proposed to mimic the computation abilities of the plasmodium of Physarum polycephalum. This model was implemented on software, as well as, on hardware, namely on a Field Programmable Gate Array (FPGA). The specific ability of the P. polycephalum simulated here is given in brief, also bringing attention to the approximation of a Kolmogorov-Uspensky machine (KUM), an alternative to the Turing machine. KUM represent data and program by a labeled indirected graphs and a computation is performed by adding/removing nodes/edges. The proposed model implementation is taking full advantage of the inherent parallel nature of automaton networks, and CA, as a result of the mapping of the local rule to a digital circuit. Consequently, the acceleration of the computation for the hardware implementation, compared to the software, is as high as 6 orders of magnitude.

Keywords

Slime mould Cellular automata Hardware Agents Kolmogorov machine 

References

  1. 1.
    Adamatzky, A.: Physarum Machines: Computers From Slime Mould, vol. 74. World Scientific, Singapore (2010)Google Scholar
  2. 2.
    Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1–2), 47–52 (2001)CrossRefGoogle Scholar
  3. 3.
    Adamatzky, A.: Advances in Physarum Machines: Sensing and Computing with Slime Mould, 1st edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-26662-6CrossRefGoogle Scholar
  4. 4.
    Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)CrossRefGoogle Scholar
  5. 5.
    Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. Nanobiosci. 11(2), 131–134 (2012)CrossRefGoogle Scholar
  6. 6.
    Adamatzky, A.: Developing proximity graphs by physarum polycephalum: does the plasmodium follow the toussaint hierarchy? Parallel Process. Lett. 19(01), 105–127 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aono, M., Zhu, L., Hara, M.: Amoeba-based neurocomputing for 8-city traveling salesman problem. Int. J. Unconv. Comput. 7(6), 463–480 (2011)Google Scholar
  8. 8.
    Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-computing. BioSystems 73(1), 45–55 (2004)CrossRefGoogle Scholar
  9. 9.
    Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  10. 10.
    Evangelidis, V., Tsompanas, M.A., Sirakoulis, G.C., Adamatzky, A.: Slime mould imitates development of Roman roads in the Balkans. J. Archaeol. Sci. Rep. 2, 264–281 (2015)Google Scholar
  11. 11.
    Tsompanas, M.A.I., Mayne, R., Sirakoulis, G.C., Adamatzky, A.I.: A cellular automata bioinspired algorithm designing data trees in wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(6), 471045 (2015)CrossRefGoogle Scholar
  12. 12.
    Tero, A., et al.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jones, J.: From Pattern Formation to Material Computation: Multi-agent Modelling of Physarum Polycephalum, vol. 15. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-16823-4CrossRefGoogle Scholar
  14. 14.
    Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An adaptive and robust biological network based on the vacant-particle transportation model. J. Theor. Biol. 272(1), 187–200 (2011)CrossRefGoogle Scholar
  15. 15.
    Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration Biomim. 7(3), 036013 (2012)CrossRefGoogle Scholar
  16. 16.
    Tsompanas, M.-A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models simulating slime mould computing. In: Adamatzky, A. (ed.) Advances in Physarum Machines. ECC, vol. 21, pp. 563–594. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26662-6_27CrossRefGoogle Scholar
  17. 17.
    Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process. Lett. 17(04), 455–467 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Adamatzky, A., Jones, J.: Programmable reconfiguration of physarum machines. Nat. Comput. 9(1), 219–237 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176 (1953)Google Scholar
  20. 20.
    Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspekhi Mat. Nauk 13(4), 3–28 (1958)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bull. EATCS 81, 195–225 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Jones, J.: Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 191–208. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03745-0_23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Menelaos Madikas
    • 1
  • Michail-Antisthenis Tsompanas
    • 2
    Email author
  • Nikolaos Dourvas
    • 1
  • Georgios Ch. Sirakoulis
    • 1
  • Jeff Jones
    • 2
  • Andrew Adamatzky
    • 2
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Unconventional Computing LaboratoryUniversity of the West of EnglandBristolUK

Personalised recommendations