Stochastic Stability in Schelling’s Segregation Model with Markovian Asynchronous Update

  • Gabriel IstrateEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11115)


We investigate the dependence of steady-state properties of Schelling’s segregation model on the agents’ activation order. Our basic formalism is the Pollicott-Weiss version of Schelling’s segregation model. Our main result modifies this baseline scenario by incorporating contagion in the decision to move: (pairs of) agents are connected by a second, agent influence network. Pair activation is specified by a random walk on this network.

The considered schedulers choose the next pair nonadaptively. We can complement this result by an example of adaptive scheduler (even one that is quite fair) that is able to preclude maximal segregation. Thus scheduler nonadaptiveness seems to be required for the validity of the original result under arbitrary asynchronous scheduling. The analysis (and our result) are part of an adversarial scheduling approach we are advocating to evolutionary games and social simulations.


  1. 1.
    Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)CrossRefGoogle Scholar
  2. 2.
    Fatès, N.: A guided tour of asynchronous cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 15–30. Springer, Heidelberg (2013). Scholar
  3. 3.
    Vinković, D., Kirman, A.: A physical analogue of the Schelling model. Proc. Nat. Acad. Sci. 103(51), 19261–19265 (2006)CrossRefGoogle Scholar
  4. 4.
    Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1–2), 1–24 (2007)CrossRefGoogle Scholar
  5. 5.
    Zhang, J.: Residential segregation in an all-integrationist world. J. Econ. Behav. Organ. 24(4), 533–550 (2004)CrossRefGoogle Scholar
  6. 6.
    Young, H.P.: Individual Strategy and Social Structure: an Evolutionary Theory of Institutions. Princeton University Press, Princeton (1998)Google Scholar
  7. 7.
    Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional Schelling segregation. In: Proceedings of the 44th Annual ACM STOC, pp. 789–804 (2012)Google Scholar
  8. 8.
    Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games. In: Proceedings of 50th Annual IEEE FOCS, pp. 303–312. IEEE (2009)Google Scholar
  9. 9.
    Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Logit dynamics with concurrent updates for local interaction games. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 73–84. Springer, Heidelberg (2013). Scholar
  10. 10.
    Pollicott, M., Weiss, H.: The dynamics of Schelling-type segregation models. Adv. Appl. Math. 27, 17–40 (2001)CrossRefGoogle Scholar
  11. 11.
    Hegselmann, R.: Thomas C. Schelling and James M. Sakoda: the intellectual, technical, and social history of a model. J. Artif. Soc. Soc. Simul. 20(3), 15 (2017)Google Scholar
  12. 12.
    Fates, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. arXiv preprint nlin/0402016 (2004)Google Scholar
  13. 13.
    Bouré, O., Fates, N., Chevrier, V.: Probing robustness of cellular automata through variations of asynchronous updating. Nat. Comput. 11(4), 553–564 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Foster, D., Young, H.P.: Stochastic evolutionary game dynamics. Theor. Popul. Biol. 38(2), 219–232 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Young, H.P.: The dynamics of conformity. In: Social Dynamics, pp. 133–153 (2001)Google Scholar
  16. 16.
    Page, S.E.: On incentives and updating in agent based models. Comput. Econ. 10(1), 67–87 (1997)CrossRefGoogle Scholar
  17. 17.
    Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav. 68(2), 413–427 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of game-theoretic models of norm diffusion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 273–282. Springer, Heidelberg (2008). Scholar
  20. 20.
    Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of discrete models of social dynamics. Math. Struct. Comput. Sci. 22(5), 788–815 (2012)CrossRefGoogle Scholar
  21. 21.
    Dyer, M., Greenhill, C., Goldberg, L.A., Istrate, G., Jerrum, M.: The convergence of iterated prisoner’s dilemma game. Comb. Probab. Comput. 11, 135–147 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hines, P., Dobson, I., Rezaei, P.: Cascading power outages propagate locally in an influence graph that is not the actual grid topology. IEEE Trans. Power Syst. 32(2), 958–967 (2017)Google Scholar
  23. 23.
    Fatès, N., Morvan, M.: Perturbing the topology of the game of life increases its robustness to asynchrony. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 111–120. Springer, Heidelberg (2004). Scholar
  24. 24.
    Dennunzio, A., Formenti, E., Kŭrka, P.: Cellular automata dynamical systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 25–75. Springer, Heidelberg (2012). Scholar
  25. 25.
    Blume, L.E.: Population games. In: Durlauf, S., Young, H.P. (eds.) Social Dynamics: Economic Learning and Social Evolution. MIT Press, Cambridge (2001)Google Scholar
  26. 26.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceWest University of TimişoaraTimişoaraRomania
  2. 2.e-Austria Research InstituteTimişoaraRomania

Personalised recommendations