Skip to main content

Pheromone Interactions in a Cellular Automata-Based Model for Surveillance Robots

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

This work investigates a coordination model based on a two-dimensional cellular automata applied to a team of surveillance robots. The synergy among the robots emerges from the indirect communication performed by repulsive pheromone interactions. Five strategies are evaluated for the decision-making related to the next-cell selection: three stochastic (pure, elitist and inertial), one random and one deterministic. The performance of the team performing surveillance are evaluated in respect to two aspects: the number of task cycles (visiting all the rooms) completed in a fixed interval of time and the homogeneity of the environment coverage. Experimental results corroborate the importance of the cooperative pheromone and shows that the decision-making strategies have different inherent skills that can be explored for distinct situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anisi, D.A., Ogren, P., Hu, X.: Cooperative minimum time surveillance with multiple ground vehicles. IEEE Trans. Autom. Control 55(12), 2679–2691 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bontzorlos, T., Sirakoulis, G.C.: Bioinspired algorithm for area surveillance using autonomous robots. Int. J. Parallel Emerg. Distrib. Syst. 32(4), 368–385 (2017)

    Article  Google Scholar 

  3. Boukas, E., Kostavelis, I., Gasteratos, A., Sirakoulis, G.C.: Robot guided crowd evacuation. IEEE Trans. Autom. Sci. Eng. 12(2), 739–751 (2015)

    Article  Google Scholar 

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  5. Calvo, R., Constantino, A.A., Figueiredo, M.: Individual distinguishing pheromone in a multi-robot system for a balanced partitioned surveillance task. In: 2016 International Joint Conference on Neural Networks, pp. 4346–4353. IEEE (2016)

    Google Scholar 

  6. Calvo, R., de Oliveira, J.R., Romero, R.A., Figueiredo, M.: A bioinspired coordination strategy for controlling of multiple robots in surveillance tasks. Int. J. Adv. Softw. 5(3 & 4), 2012 (2012)

    Google Scholar 

  7. Ferreira, G.B.S., Vargas, P.A., Oliveira, G.M.B.: An improved cellular automata-based model for robot path-planning. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI), vol. 8717, pp. 25–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10401-0_3

    Chapter  Google Scholar 

  8. Ioannidis, K., Sirakoulis, G.C., Andreadis, I.: Cellular ants: a method to create collision free trajectories for a cooperative robot team. Robot. Auton. Syst. 59(2), 113–127 (2011)

    Article  Google Scholar 

  9. Kerr, W., Spears, D.: Robotic simulation of gases for a surveillance task. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2905–2910. IEEE (2005)

    Google Scholar 

  10. Lima, D.A., Tinoco, C.R., Oliveira, G.M.B.: A cellular automata model with repulsive pheromone for swarm robotics in surveillance. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 312–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_31

    Chapter  Google Scholar 

  11. Lima, D.A., Oliveira, G.M.: New bio-inspired coordination strategies for multi-agent systems applied to foraging tasks. In: 28th International Conference on Tools with Artificial Intelligence, pp. 1–8. IEEE (2016)

    Google Scholar 

  12. Lima, D.A., Oliveira, G.M.: A probabilistic cellular automata ant memory model for a swarm of foraging robots. In: 2016 14th International Conference on Control, Automation, Robotics and Vision, pp. 1–6. IEEE (2016)

    Google Scholar 

  13. Lima, D.A., Oliveira, G.M.: A cellular automata ant memory model of foraging in a swarm of robots. Appl. Math. Model. 47, 551–572 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In: Gini, M., Voyles, R. (eds.) Distributed Autonomous Robotic Systems 7, pp. 135–144. Springer, Tokyo (2006). https://doi.org/10.1007/4-431-35881-1_14

    Chapter  MATH  Google Scholar 

  15. Sauter, J.A., Matthews, R., Van Dyke Parunak, H., Brueckner, S.A.: Performance of digital pheromones for swarming vehicle control. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 903–910. ACM (2005)

    Google Scholar 

  16. Tinoco, C.R., Lima, D.A., Oliveira, G.M.B.: An improved model for swarm robotics in surveillance based on cellular automata and repulsive pheromone with discrete diffusion. Int. J. Parallel Emerg. Distrib. Syst., 1–25 (2017). https://doi.org/10.1080/17445760.2017.1334886

  17. Zheng, Z., Tan, Y.: Group explosion strategy for searching multiple targets using swarm robotic. In: 2013 IEEE Congress on Evolutionary Computation, pp. 821–828. IEEE (2013)

    Google Scholar 

Download references

Acknowledgment

GMBO is grateful to Fapemig, CNPq and CAPES financial support. CRT is grateful to CAPES for his scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiney R. Tinoco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tinoco, C.R., Oliveira, G.M.B. (2018). Pheromone Interactions in a Cellular Automata-Based Model for Surveillance Robots. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics