Skip to main content

Evolutionary Harmony Search Algorithm for Sport Scheduling Problem

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXX

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 11120))

  • 513 Accesses

Abstract

In this paper, an original enhanced harmony search algorithm (HS-TTP) is proposed for the well-known NP-hard traveling tournament problem (TTP) in sports scheduling. TTP is concerned with finding a tournament schedule that minimizes the total distances traveled by the teams. TTP is well-known, and an important problem within the collective sports communities since a poor optimization in TTP can cause heavy losses in the budget of managing the league’s competition. In order to apply HS to TTP, we use a largest-order-value rule to transform harmonies from real vectors to abstract schedules. We introduce a new heuristic for rearranging the scheduled rounds which give us a significant enhancement in the quality of the solutions. Further, we use a local search as a subroutine in HS to improve its intensification mechanism. The overall method (HS-TTP) is evaluated on publicly available standard benchmarks and compared with the state-of-the-art techniques. Our approach succeeds in finding optimal solutions for several instances. For the other instances, the general deviation from optimality is equal to 4.45%. HS-TTP is able to produce high-quality results compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Challenge traveling tournament instances. http://mat.tepper.cmu.edu/TOURN/. Accessed 29 Jan 2016

  2. Anagnostopoulos, A., Michel, L., Hentenryck, P.V., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. J. Sched. 9(2), 177–193 (2006)

    Article  Google Scholar 

  3. Axsäter, S.: Planning order releases for an assembly system with random operation times. In: Liberopoulos, G., Papadopoulos, C.T., Tan, B., Smith, J.M., Gershwin, S.B. (eds.) Stochastic Modeling of Manufacturing Systems, pp. 333–344. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29057-5_14

    Chapter  Google Scholar 

  4. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Article  Google Scholar 

  5. Biajoli, F.L., Lorena, L.A.N.: Clustering search approach for the traveling tournament problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 83–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76631-5_9

    Chapter  Google Scholar 

  6. Cáceres, L.P., Riff, M.C.: AISTTP: an artificial immune algorithm to solve traveling tournament problems. Int. J. Comput. Intell. Appl. 11(01), 1250008 (2012)

    Article  Google Scholar 

  7. de Carvalho, M.A.M., Lorena, L.A.N.: New models for the mirrored traveling tournament problem. Comput. Ind. Eng. 63(4), 1089–1095 (2012)

    Article  Google Scholar 

  8. Chen, P.C., Kendall, G., Berghe, G.V.: An ant based hyper-heuristic for the travelling tournament problem. In: IEEE Symposium on Computational Intelligence in Scheduling, SCIS 2007, pp. 19–26. IEEE (2007)

    Google Scholar 

  9. Choubey, N.S.: A novel encoding scheme for traveling tournament problem using genetic algorithm. IJCA 2(7), 79–82 (2010). Special Issue on Evolutionary Computation

    Article  Google Scholar 

  10. Costa, F.N., Urrutia, S., Ribeiro, C.C.: An ils heuristic for the traveling tournament problem with predefined venues. Ann. Oper. Res. 194(1), 137–150 (2012)

    Article  MathSciNet  Google Scholar 

  11. Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. J. Heuristics 13(2), 189–207 (2007)

    Article  Google Scholar 

  12. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_43

    Chapter  MATH  Google Scholar 

  13. Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X., Chong, C.S.: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 27(2), 363–374 (2016)

    Article  Google Scholar 

  14. Geem, Z.W.: Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 316–323. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-1_39

    Chapter  Google Scholar 

  15. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications. SCI, vol. 191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00185-7

    Book  Google Scholar 

  16. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  17. Geem, Z.W., Yoon, Y.: Harmony search optimization of renewable energy charging with energy storage system. Int. J. Electr. Power Energy Syst. 86, 120–126 (2017)

    Article  Google Scholar 

  18. Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016). https://doi.org/10.1007/s10479-014-1586-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Article  MathSciNet  Google Scholar 

  20. Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Ann. Oper. Res. 218(1), 237–247 (2014)

    Article  MathSciNet  Google Scholar 

  21. Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem. Eur. J. Oper. Res. 204(2), 218–228 (2010)

    Article  MathSciNet  Google Scholar 

  22. Januario, T., Urrutia, S., Ribeiro, C.C., De Werra, D.: Edge coloring: a natural model for sports scheduling. Eur. J. Oper. Res. 254(1), 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010)

    Article  MathSciNet  Google Scholar 

  24. Khelifa, M., Boughaci, D.: A variable neighborhood search method for solving the traveling tournaments problem. Electron. Notes Discret. Math. 47, 157–164 (2015)

    Article  MathSciNet  Google Scholar 

  25. Khelifa, M., Boughaci, D.: Hybrid harmony search combined with variable neighborhood search for the traveling tournament problem. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 520–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_48

    Chapter  Google Scholar 

  26. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

    Article  MathSciNet  Google Scholar 

  27. Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478 (2006)

    Article  MathSciNet  Google Scholar 

  28. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Marković, D., Petrović, G., Ćojbašić, Ž., Marinković, D.: A comparative analysis of metaheuristic maintenance optimization of refuse collection vehicles using the Taguchi experimental design. Trans. FAMENA 36(4), 25–38 (2013)

    Google Scholar 

  30. Padberg, M.: Harmony search algorithms for binary optimization problems. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research Proceedings 2011, pp. 343–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1_55

    Chapter  Google Scholar 

  31. Qian, B., Wang, L., Hu, R., Huang, D., Wang, X.: A DE-based approach to no-wait flow-shop scheduling. Comput. Ind. Eng. 57(3), 787–805 (2009)

    Article  Google Scholar 

  32. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. Ann. Oper. Res. 171(1), 45 (2009)

    Article  MathSciNet  Google Scholar 

  33. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)

    Article  Google Scholar 

  34. Rossi-Doria, O., et al.: A comparison of the performance of different metaheuristics on the timetabling problem. In: Burke, E., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45157-0_22

    Chapter  Google Scholar 

  35. Saka, M.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. J. Constr. Steel Res. 65(1), 36–43 (2009)

    Article  Google Scholar 

  36. Sivasubramani, S., Swarup, K.: Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energy Syst. 33(3), 745–752 (2011)

    Article  Google Scholar 

  37. Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theor. Comput. Sci. 412(4–5), 345–351 (2011)

    Article  MathSciNet  Google Scholar 

  38. Uthus, D.C., Riddle, P.J., Guesgen, H.W.: An ant colony optimization approach to the traveling tournament problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 81–88. ACM (2009)

    Google Scholar 

  39. Van Hentenryck, P., Vergados, Y.: Population-based simulated annealing for traveling tournaments. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 267. MIT Press, Cambridge, London (1999). AAAI Press, Menlo Park (2007)

    Google Scholar 

  40. Wang, C.M., Huang, Y.F.: Self-adaptive harmony search algorithm for optimization. Expert. Syst. Appl. 37(4), 2826–2837 (2010)

    Article  Google Scholar 

  41. Wang, L., Pan, Q.K., Tasgetiren, M.F.: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert. Syst. Appl. 37(12), 7929–7936 (2010)

    Article  Google Scholar 

  42. de Werra, D.: Some models of graphs for scheduling sports competitions. Discret. Appl. Math. 21(1), 47–65 (1988)

    Article  MathSciNet  Google Scholar 

  43. Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Ann. Oper. Res. 218(1), 347–360 (2014)

    Article  MathSciNet  Google Scholar 

  44. Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research community can be. In: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends: Advancements and Trends, p. 72 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Khelifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khelifa, M., Boughaci, D., Aïmeur, E. (2018). Evolutionary Harmony Search Algorithm for Sport Scheduling Problem. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99810-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99809-1

  • Online ISBN: 978-3-319-99810-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics