Phylogeny and Biodiversity of Prokaryotes

  • Philippe NormandEmail author
  • Pierre Caumette


Creating a hierarchical system for microbes began as soon as microbes were discovered and has been constantly evolving ever since. The larger categories, the techniques to define taxa, and the bibliographical conventions, all these are regularly changing. At the moment, there are 30 bacterial phyla and 6 archaeal phyla that are described. The impact of genomes on taxonomy and phylogeny is also discussed.


Evolution Family Genome Genus Kingdom Locus Order Phylogeny Species Taxonomy 


  1. Abby SS, Tannier E, Gouy M, Daubin V (2010) Detecting lateral gene transfers by statistical reconciliation of phylogenetic 0020 forests. BMC Bioinformatics 11:324PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adanson M (1763) Familles des plantes. Vincent, ParisCrossRefGoogle Scholar
  3. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, Yamaguchi T (2014) Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage. J Biosci Bioeng 118:540–545PubMedCrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  5. Armon R, Potasman I, Green M (1990) Biochemical fingerprints of Legionella spp. by the BIOLOG system: presumptive identification of clinical and environmental isolates. Lett Appl Microbiol 11:290–292PubMedCrossRefGoogle Scholar
  6. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188–9193PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedPubMedCentralCrossRefGoogle Scholar
  8. Battermann A, Disse-Kromker C, Dreiseikelmann B (2003) A functional plasmid-borne rrn operon in soil isolates belonging to the genus Paracoccus. Microbiology 149:3587–3593PubMedCrossRefGoogle Scholar
  9. Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau ML, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585PubMedCrossRefGoogle Scholar
  11. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  12. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. The Williams and Wilkins Co., BaltimoreGoogle Scholar
  13. Bhandari V, Gupta RS (2014) Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie Van Leeuwenhoek 105:143–168PubMedCrossRefGoogle Scholar
  14. Bhatnagar S, Badger JH, Madupu R, Khouri HM, O’Connor EM, Robb FT, Ward NL, Eisen JA (2015) Genome sequence of a sulfate-reducing thermophilic Bacterium, Thermodesulfobacterium commune DSM 2178T (Phylum Thermodesulfobacteria). Genome Announc 3:e01490–e01414PubMedPubMedCentralGoogle Scholar
  15. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21PubMedCrossRefGoogle Scholar
  16. Bloodworth RA, Selin C, Lopez De Volder MA, Drevinek P, Galanternik L, Degrossi J, Cardona ST (2015) Draft genome sequences of Burkholderia contaminans, a Burkholderia cepacia complex species that is increasingly recovered from cystic fibrosis patients. Genome Announc 3:e00766–e00715PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brenner DJ, Krieg NR, Staley JT, Garrity GM (2005) Bergey’s manual of systematic bacteriology. Springer-Verlag, New YorkCrossRefGoogle Scholar
  18. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252PubMedCrossRefGoogle Scholar
  19. Brock T (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210PubMedPubMedCentralGoogle Scholar
  20. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  21. Browning GF, Citti C (2014) Mollicutes: molecular biology and pathogenesis. Caister Academic Press, NorfolkGoogle Scholar
  22. Brumm PJ, Gowda K, Robb FT, Mead DA (2016) The complete genome sequence of hyperthermophile Dictyoglomus turgidum DSM 6724 reveals a specialized carbohydrate fermentor. Front Microbiol 7:1979PubMedPubMedCentralCrossRefGoogle Scholar
  23. Byrne GI (2003) Chlamydia uncloaked. Proc Natl Acad Sci U S A 100:8040–8042PubMedPubMedCentralCrossRefGoogle Scholar
  24. Castenholz RW (2001) Phylum BX, Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 473–599CrossRefGoogle Scholar
  25. Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76PubMedCrossRefGoogle Scholar
  26. Cerqueda-Garcia D, Martinez-Castilla LP, Falcon LI, Delaye L (2014) Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‘Chlorochromatium aggregatum’. ISME J 8:991–998PubMedCrossRefGoogle Scholar
  27. Chen Y, Ye L, Zhao F, Xiao L, Cheng S, Zhang XX (2016) Bacterial community shift during the startup of a full-scale oxidation ditch treating sewage. J Microbiol Biotechnol PubMedCrossRefGoogle Scholar
  28. Cho J, Vergin K, Morris R, Giovannoni S (2004) Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 6:611–621PubMedCrossRefGoogle Scholar
  29. Coil DA, Lo JR, Chen R, Ward N, Robb FT, Eisen JA (2013) Draft genome sequence of the arsenate-respiring bacterium Chrysiogenes arsenatis strain DSM 11915. Genome Announc 1:e00953–e00913PubMedPubMedCentralGoogle Scholar
  30. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP, Graf J (2014) Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 5:e02136PubMedPubMedCentralCrossRefGoogle Scholar
  31. DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77:6295–6300PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dietl A, Ferousi C, Maalcke WJ, Menzel A, de Vries S, Keltjens JT, Jetten MS, Kartal B, Barends TR (2015) The inner workings of the hydrazine synthase multiprotein complex. Nature 527:394–397PubMedCrossRefGoogle Scholar
  33. Dige I, Gronkjaer L, Nyvad B (2014) Molecular studies of the structural ecology of natural occlusal caries. Caries Res 48:451–460PubMedCrossRefGoogle Scholar
  34. Edward DG, Freundt FA (1967) Proposal for Mollicutes as name of the class established for the order Mycoplasmatales. Int J Syst Bacteriol 17:267–268CrossRefGoogle Scholar
  35. Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123PubMedPubMedCentralCrossRefGoogle Scholar
  36. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107PubMedPubMedCentralCrossRefGoogle Scholar
  37. Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289PubMedCrossRefGoogle Scholar
  38. Eveleigh RJ, Meehan CJ, Archibald JM, Beiko RG (2013) Being Aquifex aeolicus: untangling a hyperthermophile’s checkered past. Genome Biol Evol 5:2478–2497PubMedPubMedCentralCrossRefGoogle Scholar
  39. Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687PubMedCrossRefGoogle Scholar
  40. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791PubMedCrossRefGoogle Scholar
  41. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  42. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ et al (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedCrossRefGoogle Scholar
  43. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garrity G, Holt J (2001a) Phylum BIX, Deferribacteres phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 465–471CrossRefGoogle Scholar
  45. Garrity G, Holt J (2001b) Phylum BVI, Chloroflexi phy. nov. In: Boon DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 427–446CrossRefGoogle Scholar
  46. Garrity GM, Holt JG (2001c) Phylum BIII, Thermodesulfobacteria phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 389–393CrossRefGoogle Scholar
  47. Garrity GM, Holt JG (2001d) Phylum BV. Chrysiogenetes phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, (The Archaea and the deeply branching and phototrophic Bacteria), vol 1. Springer-Verlag, New York, pp 421–425CrossRefGoogle Scholar
  48. Garrity GM, Holt JG (2001e) Phylum BVII. Thermomicrobia phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic Bacteria, vol 1. Springer, New York, pp 447–450CrossRefGoogle Scholar
  49. Garrity GM, Holt JG (2001f) Phylum BVIII. Nitrospirae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic Bacteria, vol 1. Springer-Verlag, New York, pp 451–464CrossRefGoogle Scholar
  50. Garrity GM, Holt JG (2001g) Phylum BXI. Chlorobi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic Bacteria, vol 1. Springer-Verlag, New York, pp 601–623CrossRefGoogle Scholar
  51. Garrity GM, Holt JG (2001h) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, pp 119–166CrossRefGoogle Scholar
  52. Garrity GM, Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology. Springer-Verlag, New YorkGoogle Scholar
  53. Gauthier S, Tetu A, Himaya E, Morand M, Chandad F, Rallu F, Bujold E (2011) The origin of Fusobacterium nucleatum involved in intra-amniotic infection and preterm birth. J Matern Fetal Neonatal Med 24:1329–1332PubMedCrossRefGoogle Scholar
  54. Geissinger O, Herlemann DP, Morschel E, Maier UG, Brune A (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 75:2831–2840PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3:2471PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gharbia SE, Shah HN, Edwards KJ (2010) Genus I. Fusobacterium Knorr 1922, 4AL. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York/Dordrecht/Heidelberg/London, pp 747–774Google Scholar
  57. Glaeser SP, Kampfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245PubMedCrossRefGoogle Scholar
  58. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91PubMedCrossRefGoogle Scholar
  59. Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K, Mimouni W, Sbissi I, Ayari A, Yamanaka T, Normand P et al (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Nature Sci Rep 5:13112Google Scholar
  60. Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143PubMedCrossRefGoogle Scholar
  61. Gupta RS, Bao B (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gupta RS, Lali R (2013) Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae. Antonie Van Leeuwenhoek 104:349–368PubMedCrossRefGoogle Scholar
  63. Gupta RS, Chander P, George S (2013) Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexia class. nov. [corrected] into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie Van Leeuwenhoek 103:99–119PubMedCrossRefGoogle Scholar
  64. Gutierrez T, Berry D, Teske A, Aitken MD (2016) Enrichment of Fusobacteria in sea surface oil slicks from the Deepwater Horizon oil spill. Microorganisms 4:24PubMedCentralCrossRefPubMedGoogle Scholar
  65. Guy L, Ettema TJ (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587PubMedCrossRefGoogle Scholar
  66. Hamdi O, Ben Hania W, Postec A, Bouallagui H, Hamdi M, Bonin P, Ollivier B, Fardeau ML (2015) Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes. Int J Syst Evol Microbiol 65:609–614PubMedCrossRefGoogle Scholar
  67. Hedlund BP, Gosink JJ, Staley JT (1997) Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie Van Leeuwenhoek 72:29–38PubMedCrossRefGoogle Scholar
  68. Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–131PubMedCrossRefGoogle Scholar
  69. Hovanec TA, Taylor LT, Blakis A, Delong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64:258–264PubMedPubMedCentralGoogle Scholar
  70. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hugenholtz P, Stackebrandt E (2004) Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54:2049–2051PubMedCrossRefGoogle Scholar
  72. Ji Q, Luo ZX, Yuan CX, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822PubMedCrossRefGoogle Scholar
  73. Johnson JL, Ordal EJ (1968) Deoxyribo- nucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J Bacteriol 95:893–900PubMedPubMedCentralGoogle Scholar
  74. Jumas-Bilak E, Roudiere L, Marchandin H (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035PubMedCrossRefGoogle Scholar
  75. Kadnikov VV, Mardanov AV, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skryabin KG (2012) Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol Ecol 79:348–358PubMedCrossRefGoogle Scholar
  76. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744PubMedPubMedCentralGoogle Scholar
  78. Kishimoto N, Tano T (1987) Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J Gen Appl Microbiol 33:11–25CrossRefGoogle Scholar
  79. Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D (2010) Bergey’s manual of systematic bacteriology. Springer, New YorkCrossRefGoogle Scholar
  80. Kunnimalaiyaan M, Stevenson DM, Zhou Y, Vary PS (2001) Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 39:1010–1021PubMedCrossRefGoogle Scholar
  81. Lagkouvardos I, Jehl MA, Rattei T, Horn M (2014) Signature protein of the PVC superphylum. Appl Environ Microbiol 80:440–445PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lapage S, Sneath P, Skerman E, Lessel H, Seeliger R, Clark W (1992) International code of nomenclature of bacteria: bacteriological code, 1990 revision. ASM Press, Washington, DCGoogle Scholar
  83. Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C et al (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26:5–11PubMedCrossRefGoogle Scholar
  85. Lindström K, Young JPW (2011) International committee on systematics of prokaryotes subcommittee on the taxonomy of Agrobacterium and Rhizobium. Int J Syst Evol Microbiol 61:3089–3093PubMedCrossRefGoogle Scholar
  86. Linnaeus C (1753) Species Plantarum. StockholmGoogle Scholar
  87. Lopez-Garcia P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159:67–73PubMedCrossRefGoogle Scholar
  88. Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157PubMedCrossRefGoogle Scholar
  89. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145PubMedPubMedCentralCrossRefGoogle Scholar
  90. Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman & Co, San FranciscoGoogle Scholar
  91. Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  92. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60PubMedPubMedCentralCrossRefGoogle Scholar
  93. Miller JM, Rhoden DL (1991) Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J Clin Microbiol 29:1143–1147PubMedPubMedCentralGoogle Scholar
  94. Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA (2009) Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:1040–1044PubMedCrossRefGoogle Scholar
  95. Mohamad KY, Kaltenboeck B, Rahman Kh S, Magnino S, Sachse K, Rodolakis A (2014) Host adaptation of Chlamydia pecorum towards low virulence evident in co-evolution of the ompA, incA, and ORF663 Loci. PLoS One 9:e103615PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki K (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int J Syst Evol Microbiol 59:2894–2898PubMedCrossRefGoogle Scholar
  97. Mougel C, Thioulouse J, Perriere G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586PubMedCrossRefGoogle Scholar
  98. Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233PubMedCrossRefGoogle Scholar
  99. Murray RGE (1984) Validation of the publication of nex names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 34:355–357CrossRefGoogle Scholar
  100. Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187PubMedCrossRefGoogle Scholar
  101. Oba T, Andachi Y, Muto A, Osawa S (1991) CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci U S A 88:921–925PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Molec Evol 26:74–86PubMedCrossRefGoogle Scholar
  103. Oren A, da Costa MS, Garrity GM, Rainey FA, Rossello-Mora R, Schink B, Sutcliffe I, Trujillo ME, Whitman WB (2015) Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 65:4284–4287PubMedCrossRefGoogle Scholar
  104. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9:47–53PubMedCrossRefGoogle Scholar
  105. Patel BKC (2011) Phylum XX. Dictyoglomi phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 4 (The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyglomi, Gemmatimonadetes, Lentisphaerae, Verrumicrobia, Chlamydiae, and Planctomycetes. Springer, New York, p 775Google Scholar
  106. Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O’Brien A, Fournier P et al (2015) Candidatus Frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS One 10:e0127630PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pettengill EA, Pettengill JB, Binet R (2015) Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 6:1573PubMedCrossRefGoogle Scholar
  108. Polonia AR, Cleary DF, Freitas R, Coelho FJ, de Voogd NJ, Gomes NC (2016) Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Mar Genomics 29:69–80PubMedCrossRefGoogle Scholar
  109. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC et al (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281PubMedCrossRefGoogle Scholar
  111. Ray J (1686) History of plants (Historia plantarum species hactenus editas aliasque insuper multas noviter inventas & descriptas complectens: in qua agitur primò De plantis in genere). Clark, LondonCrossRefGoogle Scholar
  112. Reysenbach A-L (2001a) Phylum BI, Aquificae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology : the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 359–367CrossRefGoogle Scholar
  113. Reysenbach A-L (2001b) Phylum BII, Thermotogae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology : the archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New York, pp 369–387CrossRefGoogle Scholar
  114. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437PubMedCrossRefPubMedCentralGoogle Scholar
  115. Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR, Tanner RS, Robinson IM, Stahl DA, Olsen G, Leach RH et al (1985) Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci U S A 82:1160–1164PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436PubMedCrossRefGoogle Scholar
  117. Saiki T, Kobayashi Y, Kawagoe K, Beppu T (1985) Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. IJSEM 35:253–259Google Scholar
  118. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  119. Schleifer K-H (2001) Phylum XIII, Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) In Bergey’s manual of systematic bacteriology: the Firmicutes, vol 3. Springer, New York, pp 19–1422Google Scholar
  120. Schopf JW (2014) Geological evidence of oxygenic photosynthesis and the biotic response to the 2400-2200 ma “great oxidation event”. Biochemistry (Mosc) 79:165–177CrossRefGoogle Scholar
  121. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832PubMedCrossRefGoogle Scholar
  122. Siqueira FM, Cibulski SP, Teixeira TF, Mayer FQ, Roehe PM (2017) Draft genome sequence of Acholeplasma laidlawii, a common contaminant of cell cultures. Genome Announc 5:e01578–e01516PubMedPubMedCentralCrossRefGoogle Scholar
  123. Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, Orphan VJ (2016) Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J 10:2679–2692PubMedPubMedCentralCrossRefGoogle Scholar
  124. Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571PubMedCrossRefGoogle Scholar
  125. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W.H. Freeman, San FranciscoGoogle Scholar
  126. Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P (2015) Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 3:e968PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sorokin DY, Muyzer G (2010) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sorokin DY, Foti M, Tindall BJ, Muyzer G (2007) Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles 11:363–370PubMedCrossRefGoogle Scholar
  129. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  130. Spring S, Bunk B, Sproer C, Schumann P, Rohde M, Tindall BJ, Klenk HP (2016) Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J 10:2801–2816PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sridhar S, Sharma A, Kongshaug H, Nilsen F, Jonassen I (2012) Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity. BMC Genomics 13:598PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal Systematic Bacteriology 44:846–849CrossRefGoogle Scholar
  133. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  134. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449PubMedCrossRefGoogle Scholar
  135. Suehiro Y, Sakai K, Nishioka M, Hashimoto S, Takami T, Higaki S, Shindo Y, Hazama S, Oka M, Nagano H et al (2017) Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann Clin Biochem 54:86–91PubMedCrossRefGoogle Scholar
  136. Szeszak F, Skripeczky K, Princzinger A, Szabo G (1973) Functional units of Streptomyces hyphae, equivalent with prokaryotic cells. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 128:243–251PubMedGoogle Scholar
  137. Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng XY, Hanada S, Mori K, Kamagata Y (2011) Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447PubMedCrossRefGoogle Scholar
  138. Thrash JC, Coates JD (2011) Phylum XVII. Acidobacteria phyl. nov.. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 4 (The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyglomi, Gemmatimonadetes, Lentisphaerae, Verrumicrobia, Chlamydiae, and Planctomycetes). Springer, New York, pp. 725–727Google Scholar
  139. Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324PubMedPubMedCentralCrossRefGoogle Scholar
  140. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  141. Vulic M, Lenski RE, Radman M (1999) Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc Natl Acad Sci U S A 96:7348–7351PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wang NF, Zhang T, Yang X, Wang S, Yu Y, Dong LL, Guo YD, Ma YX, Zang JY (2016) Diversity and composition of bacterial community in soils and lake sediments from an arctic lake area. Front Microbiol 7:1170PubMedPubMedCentralGoogle Scholar
  143. Ward NL (2011) Phylum XXV. Planctomycetes Garrity and Holt 2001, 137 emend. Ward (this volume). In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 4 (The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyglomi, Gemmatimonadetes, Lentisphaerae, Verrumicrobia, Chlamydiae, and Planctomycetes). Springer, New York, p 879Google Scholar
  144. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  145. Weisburg WG, Giovannoni SJ, Woese CR (1989) The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 11:128–134PubMedCrossRefGoogle Scholar
  146. Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i (2012) Bergey’s manual of systematic bacteriology. Springe, New YorkGoogle Scholar
  147. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  148. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090PubMedPubMedCentralCrossRefGoogle Scholar
  149. Woese CR, Stackebrandt E, Ludwig W (1984) What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 21:305–316PubMedCrossRefGoogle Scholar
  150. Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151PubMedCrossRefGoogle Scholar
  151. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wolk CP (2000) Heterocyst formation in Anabaena. In: Brun YVS, Shimkets LJ (eds) Prokaryotic development. ASM, Washington, DC, pp 83–104Google Scholar
  153. Wong MT, Wang W, Lacourt M, Couturier M, Edwards EA, Master ER (2016) Substrate-driven convergence of the microbial community in lignocellulose-amended enrichments of gut microflora from the Canadian beaver (Castor canadensis) and north american moose (Alces americanus). Front Microbiol 7:961PubMedPubMedCentralGoogle Scholar
  154. Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ et al (2009) Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 4:e4207PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci U S A 82:2306–2309PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209PubMedPubMedCentralGoogle Scholar
  157. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefGoogle Scholar
  158. Yu XL, Chan Y, Zhuang LF, Lai HC, Lang NP, Lacap-Bugler DC, Leung WK, Watt RM (2016) Distributions of Synergistetes in clinically-healthy and diseased periodontal and peri-implant niches. Microb Pathog 94:90–103PubMedCrossRefGoogle Scholar
  159. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  160. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358PubMedCrossRefGoogle Scholar
  161. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163PubMedCrossRefGoogle Scholar
  162. Zuo G, Xu Z, Hao B (2013) Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia. Genomics Proteomics Bioinformatics 11:61–65PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire d’Ecologie Microbienne, UMR 5557Université Claude Bernard Lyon 1VilleurbanneFrance
  2. 2.Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRSUniversité de Pau et des Pays de l’AdourPauFrance

Personalised recommendations