Advertisement

Exploiting Chemical Ecology for Developing Novel Integrated Pest Management Strategies for Africa

  • Zeyaur R. KhanEmail author
  • Charles A. O. Midega
  • Jimmy Pittchar
  • John A. Pickett
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Push-pull, a novel approach for integrated management of insect pests, weed and soil fertility, was developed through the exploitation of chemical ecology and agro-biodiversity to address agricultural constraints facing millions of resource-poor African farmers. The technology was developed by selecting appropriate plants that naturally emit signalling chemicals (semiochemicals) and influence plant-plant and insect-plant interactions. Plants highly attractive for egg laying by lepidopteran cereal stemborer pests were selected and employed as trap crops, to draw pests away from the main cereal crops. Among these, Pennisetum purpureum produced significantly higher levels of volatile cues (stimuli), used by gravid stem borer females to locate host plants, than maize (Zea mays) or sorghum (Sorghum bicolor). Despite its attractiveness to stemborer moths, P. purpureum supported minimal survival of the pests’ immature stages. Plants that repelled stem borer moths, notably Melinis minutiflora and forage legumes in the genus Desmodium, were selected as intercrops, which also attracted natural enemies of the pests through emission of (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene. Desmodium intercrop suppressed parasitic weed, Striga hermonthica, through an allelopathic mechanism. Their root exudates contain novel flavonoid compounds which stimulate suicidal germination of S. hermonthica seeds and dramatically inhibit its attachment to the host roots. We identified and selected new drought- and temperature-tolerant trap [Brachiaria ( B. brizantha × B. ruziziensis ) cv. mulato] and intercrop plants (Desmodium, e.g. D. intortum) suitable for drier agroecologies. The new trap and intercrop plants also have appropriate chemistry in controlling stemborers, a new invasive pest, fall armyworms and parasitic striga weeds. Opportunities for semiochemical delivery by companion plants, including plant-plant signalling and early herbivory alert, are explored for developing future smart integrated pest management (IPM) strategies.

Keywords

Biodiversity and basic science Chemical ecology Push-pull technology Novel pest management Fall armyworm Climate change 

Abbreviations

BBSRC

Biotechnology and Biological Sciences Research Council

BIRE

Biological Interactions in The Root Environment

DFID

Department for International Development

FAW

Fall armyworm

GC-EAG

Coupled gas chromatography–electroantennography

GDP

Gross domestic product

HIPVs

Herbivore-induced plant volatiles

IPM

Integrated pest management

OPV

Open pollinated varieties

SDC

Swiss Agency for Development and Cooperation

SDG

Sustainable Development Goals

SSA

Sub-Saharan Africa

Notes

Acknowledgements

We gratefully acknowledge financial support to ICIPE provided by the following organizations and agencies: the European Union, Biovision Foundation, UK Department for International Development (DFID), Swedish International Development Cooperation Agency, the Swiss Agency for Development and Cooperation (SDC) and the Kenyan Government. The views expressed herein do not necessarily reflect the official opinion of these donors. The studies within the push-pull program are conducted in collaboration with Rothamsted Research of the UK, which receives grant-aided support from the UK Biotechnology and Biological Sciences Research Council (BBSRC), with additional funding provided under the Biological Interactions in the Root Environment (BIRE) initiative. Various roles played by all partners and collaborators, including farmers, are greatly acknowledged too.

References

  1. Al-Sarar, A., Hall, F. R., & Downer, R. A. (2006). Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (J.E. Smith). Pest Management Science, 62, 1023–1031.CrossRefGoogle Scholar
  2. Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., & Takabayashi, J. (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 406, 512–515.CrossRefGoogle Scholar
  3. Bebawi, F. F., & Metwali, E. M. (1991). Witch-weed management by sorghum–Sudan grass seed size and stage of harvest. Agronomy Journal, 83, 781–785.CrossRefGoogle Scholar
  4. Birkett, M. A., Chamberlain, K., Khan, Z. R., Pickett, J. A., Toshova, T., Wadhams, L. J., & Woodcock, C. M. (2006). Electrophysiological responses of the lepidopterous stemborers Chilo partellus and Busseolafusca to volatiles from wild and cultivated host plants. Journal of Chemical Ecology, 32, 2475–2487.CrossRefGoogle Scholar
  5. Bruce, T. J. A., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: A volatile situation. Trends in Plant Science, 10, 269–274.CrossRefGoogle Scholar
  6. Bruce, T. J. A., Midega, C. A. O., Birkett, M. A., Pickett, J. A., & Khan, Z. R. (2010). Is quality more important than quantity? Insect behavioral responses to changes in a volatile blend after stemborer oviposition on an African grass. Biology Letters, 6, 314–317.CrossRefGoogle Scholar
  7. Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environmental Change, 19, 317–325.CrossRefGoogle Scholar
  8. CABI. (2017). Fall armyworm: Impacts and implications for Africa. Evidence note (2), September 2017. CAB International.Google Scholar
  9. Chamberlain, K., Khan, Z. R., Pickett, J. A., Toshova, T., & Wadhams, L. J. (2006). Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths, Chilo partellus and Busseola fusca. Journal of Chemical Ecology, 32, 565–577.CrossRefGoogle Scholar
  10. Chidawanyika, F. (2015). Effects of drought on the production of ectrophysiologically active biogenic volatiles important for cereal pest management. University of the Witwatersrand, South Africa (p. 172). Ph.D. Dissertation.Google Scholar
  11. Chidawanyika, F., Midega, C. A. O., Bruce, T. J. A., Duncan, F., Pickett, J. A., & Khan, Z. R. (2014). Oviposition acceptance and larval development of Chilo partellus stemborers in drought-stressed wild and cultivated grasses of East Africa. EntomologiaExperimentalis et Applicata, 151, 209–217.CrossRefGoogle Scholar
  12. Chitere, P. O., & Omolo, B. A. (1993). Farmers’ indigenous knowledge of crop pests and their damage in western Kenya. International Journal of Pest Management, 39, 126–132.CrossRefGoogle Scholar
  13. Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafá, G., & Crozier, J. (2017). Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7(4103), 10.Google Scholar
  14. Cook, D. R., Leonard, B. R., & Gore, J. (2004). Field and laboratory performance of novel insecticides against armyworms (Lepidoptera: Noctuidae). Florida Entomologist, 87, 433–439.CrossRefGoogle Scholar
  15. Cook, S. M., Khan, Z. R., & Pickett, J. A. (2007). The use of ‘push–pull’ strategies in integrated pest management. Annual Review of Entomology, 52, 375–400.CrossRefGoogle Scholar
  16. Dicke, M., & Sabelis, M. W. (1988). Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Functional Ecology, 2, 131–139.CrossRefGoogle Scholar
  17. Frizzas, M. R., Neto, S. S., de Oliveira, C. M., & Omoto, C. (2014). Genetically modified corn on fall armyworm and earwig populations under field conditions. Ciência Rural, 44, 203–209.CrossRefGoogle Scholar
  18. Frost, D. L., Gurney, A. L., Press, M. C., & Scholes, J. D. (1997). Striga hermonthica reduces photosynthesis in sorghum: The importance of stomatal limitations and a potential role for ABA? Plant, Cell & Environment, 20, 483–492.CrossRefGoogle Scholar
  19. Gethi, J. G., Smith, M. E., Mitchell, S. E., & Kresovich, S. (2005). Genetic diversity of Striga hermonthica and Striga asiatica populations in Kenya. Weed Research, 45, 64–73.CrossRefGoogle Scholar
  20. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One, 11(10), e0165632.  https://doi.org/10.1371/journal.pone.0165632.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gressel, J., Hanafi, A., Head, G., Marasas, W., Obilana, A. B., Ochanda, J., Souissi, T., & Tzotzos, G. (2004). Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protection, 23, 661–689.CrossRefGoogle Scholar
  22. Gurney, A. L., Press, M. C., & Scholes, J. D. (1999). Infection time and density influence the response of sorghum to the parasitic angiosperm Striga hermonthica. New Phytologist, 143, 573–580.CrossRefGoogle Scholar
  23. Gurney, A. L., Slate, J., Press, M. C., & Scholes, J. D. (2006). A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytologist, 169, 199–208.CrossRefGoogle Scholar
  24. Hardie, J., Isaacs, R., Pickett, J. A., Wadhams, L. J., & Woodcock, C. M. (1994). Methyl salicylate and (−) -(1R,5S)-myrtenal are plant derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). Journal of Chemical Ecology, 20, 2847–2855.CrossRefGoogle Scholar
  25. Hassanali, A., Herren, H., Khan, Z. R., Pickett, J. A., & Woodcock, C. M. (2008). Integrated pest management: The push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B, 363, 611–621.CrossRefGoogle Scholar
  26. Hilker, M., & Meiners, T. (2006). Early herbivore alert: Insect eggs induce plant defense. Journal of Chemical Ecology, 32, 1379–1397.CrossRefGoogle Scholar
  27. Hoerling, M., & Kumar, A. (2003). The perfect ocean for drought. Science, 299, 691–694.CrossRefGoogle Scholar
  28. Hooper, A. M., Caufield, J. C., Hao, B., Pickett, J. A., Midega, C. A. O., & Khan, Z. R. (2015). Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry, 117, 380–387.CrossRefGoogle Scholar
  29. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). (2009). Global report: Agriculture at a crossroads. Washington, DC: Island Press.Google Scholar
  30. International Fund for Agricultural Development (IFAD). (2011). Rural poverty report: New realities, new challenges: New opportunities for tomorrow’s generation. Rome: IFAD.Google Scholar
  31. Johnson, S. J. (1987). Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Insect Science and its Application, 8(4–6), 543–549.Google Scholar
  32. Kessler, A., & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–2144.CrossRefGoogle Scholar
  33. Kfir, R., Overholt, W. A., Khan, Z. R., & Polaszek, A. (2002). Biology and management of economically important lepidopteran cereal stemborers in Africa. Annual Review of Entomology, 47, 701–731.CrossRefGoogle Scholar
  34. Khan, Z. R., Chilishwa, P., Ampong-Nyarko, K., Smart, L. E., Polaszek, A., Wandera, J., & Mulaa, M. A. (1997a). Utilisation of wild gramineous plants for the management of cereal stemborers in Africa. Insect Science and its Application, 17, 143–150.Google Scholar
  35. Khan, Z. R., Ampong-Nyarko, K., Chilishwa, P., Hassanali, A., Kimani, S., Lwande, W., Overholt, W. A., Pickett, J. A., Smart, L. E., Wadhams, L. J., & Woodcock, C. M. (1997b). Intercropping increases parasitism of pests. Nature, 388, 631–632.CrossRefGoogle Scholar
  36. Khan, Z. R., Pickett, J. A., van den Berg, J., Wadhams, L. J., & Woodcock, C. M. (2000). Exploiting chemical ecology and species diversity: Stemborer and striga control for maize and sorghum in Africa. Pest Management Science, 56, 957–962.CrossRefGoogle Scholar
  37. Khan, Z. R., Pickett, J. A., Wadhams, L. J., et al. (2001). Habitat management strategies for the control of cereal stemborers and Striga in maize in Kenya. Insect Science and Applications, 21, 375–380.Google Scholar
  38. Khan, Z. R., Hassanali, A., Overholt, W., Khamis, T. M., Hooper, A. M., Pickett, A. J., Wadhams, L. J., & Woodcock, C. M. (2002). Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. Journal of Chemical Ecology, 28, 1871–1885.CrossRefGoogle Scholar
  39. Khan, Z. R., Midega, C. A. O., Hutter, N. J., Wilkins, R. M., & Wadhams, L. J. (2006a). Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. EntomologiaExperimentalis et Applicata, 119, 15–22.CrossRefGoogle Scholar
  40. Khan, Z. R., Midega, C. A. O., Pickett, J. A., Wadhams, L. J., Hassanali, A., & Wanjoya, A. (2006b). Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf Desmodium, Desmodium intortum. International Journal of Pest Management, 52, 297–302.CrossRefGoogle Scholar
  41. Khan, Z. R., Midega, C. A. O., Wadhams, L. J., Pickett, J. A., & Mumuni, A. (2007). Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push-pull strategy. Entomologia Experimentalis et Applicata, 124, 201–211.CrossRefGoogle Scholar
  42. Khan, Z. R., Midega, C. A. O., Amudavi, D. M., Hassanali, A., & Pickett, J. A. (2008). On-farm evaluation of the ‘push-pull’ technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Research, 106, 224–233.CrossRefGoogle Scholar
  43. Khan, Z. R., Midega, C. A. O., Bruce, T. J. A., Hooper, A. M., & Pickett, J. A. (2010). Exploiting phytochemicals for developing a push – pull crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany, 61, 4185–4196.CrossRefGoogle Scholar
  44. Khan, Z. R., Midega, C. A. O., Pittchar, J. O., Murage, A. W., Birkett, M. A., Bruce, T. J. A., & Pickett, J. A. (2014). Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philosophical Transactions of the Royal Society B, 369, 20120284.CrossRefGoogle Scholar
  45. Khan, Z. R., Midega, C. A. O., Hooper, A., & Pickett, J. A. (2016). Push-pull: Chemical ecology-based integrated pest management technology. Journal of Chemical Ecology, 42(7), 689–697.CrossRefGoogle Scholar
  46. Midega, C. A. O., Khan, Z. R., van den Berg, J., Ogol, C. K. P. O., & Pickett, J. A. (2006). Maize stemborer predator activity under ‘push-pull’ system and Bt-maize: A potential component in managing Bt resistance. International Journal of Pest Management, 52, 1–10.CrossRefGoogle Scholar
  47. Midega, C. A. O., Khan, Z. R., van den Berg, J., Ogol, C. K. P. O., Dippenaar-Schoeman, A. S., Pickett, J. A., & Wadhams, L. J. (2008). Response of ground-dwelling arthropods to a push–pull habitat management system: Spiders as an indicator group. Journal of Applied Entomology, 132, 248–254.CrossRefGoogle Scholar
  48. Midega, C. A. O., Khan, Z. R., Van den Berg, J., Ogol, C. K. P. O., Bruce, T. J., & Pickett, J. A. (2009). Non-target effects of the ‘push–pull’ habitat management strategy: Parasitoid activity and soil fauna abundance. Crop Protection, 28, 1045–1051.CrossRefGoogle Scholar
  49. Midega, C. A. O., Khan, Z. R., Amudavi, D. A., Pittchar, J., & Pickett, J. A. (2010). Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.), through intercropping with Desmodium intortum. International Journal of Pest Management, 56, 145–151.CrossRefGoogle Scholar
  50. Midega, C. A. O., Jonsson, M., Khan, Z. R., & Ekbom, B. (2014). Effects of landscape complexity and habitat management on stemborer colonization, parasitism and damage to maize. Agriculture, Ecosystems and Environment, 188, 289–293.CrossRefGoogle Scholar
  51. Midega, C. A. O., Bruce, T. J. A., Pickett, J. A., & Khan, Z. R. (2015a). Ecological management of cereal stemborers in African smallholder agriculture through behavioral manipulation. Ecological Entomology, 40(Suppl. 1), 70–81.CrossRefGoogle Scholar
  52. Midega, C. A. O., Bruce, T. J. A., Pickett, J. A., Jimmy, J. O., Murage, A., & Khan, Z. R. (2015b). Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Research, 180, 118–125.CrossRefGoogle Scholar
  53. Midega, C. A. O., Wasonga, C. J., Hooper, A. M., Pickett, J. A., & Khan, Z. R. (2017). Drought- tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop Protection, 98, 94–101.CrossRefGoogle Scholar
  54. Midega, C. A. O., Pittchar, J. O., Pickett, J. A., Hailu, G. W., & Khan, Z. R. (2018). A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Protection, 105, 10–15.Google Scholar
  55. Nordlund, D. A., & Lewis, W. J. (1976). Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. Journal of Chemical Ecology, 2, 211–220.CrossRefGoogle Scholar
  56. Oswald, A. (2005). Striga control technologies and their dissemination. Crop Protection, 24, 333–342.CrossRefGoogle Scholar
  57. Oswald, A., Ransom, J. K., Kroschel, J., & Sauerborn, J. (2001). Transplanting maize and sorghum reduces Striga hermonthica damage. Weed Science, 49, 346–353.CrossRefGoogle Scholar
  58. Parker, C., & Riches, C. R. (1993). Parasitic weeds of the world: Biology and control. Wallingford: CAB International.Google Scholar
  59. Päts, P. (1991). Activity of Chilo partellus (Lepidoptera: Pyralidae): Eclosion, mating and oviposition time. Bulletin of Entomological Research, 81, 93–96.CrossRefGoogle Scholar
  60. Pickett, J. A., & Khan, Z. R. (2016). Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytologist, 212, 856–870.CrossRefGoogle Scholar
  61. Pickett, J. A., Hamilton, M. L., Hooper, A. M., Khan, Z. R., & Midega, C. A. O. (2010). Companion cropping to manage parasitic plants. Annual Review of Phytopathology, 48, 161–177.CrossRefGoogle Scholar
  62. Pinstrup-Andersen (Ed.). (2010). The African food system and its interaction with human health and nutrition. New York: Cornell University Press.Google Scholar
  63. Pretty, J., Noble, A. D., Bossio, D., Dickson, J., Hine, R. E., Penning de Vries, F. W. T., & Morrison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science and Technology, 40(4), 1114–1119.CrossRefGoogle Scholar
  64. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Sustainable Agriculture, 9, 5–24.CrossRefGoogle Scholar
  65. Rodenburg, J., Bastiaans, L., Weltzien, E., & Hess, D. E. (2005). How can selection for striga resistance and tolerance in sorghum be improved. Field Crops Research, 93, 34–50.CrossRefGoogle Scholar
  66. Sanchez, P. (2002). Soil fertility and hunger in Africa. Science, 295(5562), 2019–2020.CrossRefGoogle Scholar
  67. Solomon, D., Lehmann, J., Kinyanjui, J., Amelung, W., Lobe, I., Ngoze, S., Riha, S., Pell, A., Storer, N. P., Babcock, J. M., Schlenz, M., Meade, T., & Thompson, G. D. (2010). Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda(Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103, 1031–1038.CrossRefGoogle Scholar
  68. Sparks, A. N. (1979). A review of the biology of the fall armyworm. Florida Entomologist, 62(2), 82–87.CrossRefGoogle Scholar
  69. Storer, N. P., Babcock, J. M., Schlenz, M., Meade, T., & Thompson, G. D. (2010). Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103, 1031–1038.CrossRefGoogle Scholar
  70. Tamiru, A., Bruce, T. J. A., Woodcock, C. M., et al. (2011). Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecology Letters, 14, 1075–1083.CrossRefGoogle Scholar
  71. Tamiru, A., Bruce, T., Midega, C. A. O., et al. (2012). Oviposition-induced volatile emissions from African smallholder farmers’ maize varieties. Journal of Chemical Ecology, 38, 231–234.CrossRefGoogle Scholar
  72. Tamiru, A., Khan, Z. R., & Bruce, T. J. A. (2015). New directions for improving crop resistance to insects by breeding for egg induced defence. Current Opinion in Insect Science.  https://doi.org/10.1016/j.cois.2015.02.011.
  73. Tenebe, V. A., & Kamara, H. M. (2002). Effect of Striga hermonthica on the growth characteristics of sorghum intercropped with groundnut varieties. Journal of Agronomy and Crop Science, 188, 376–381.CrossRefGoogle Scholar
  74. Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guenée from the Western Hemisphere. Annals of the Entomological Society of America, 73(6), 722–738.CrossRefGoogle Scholar
  75. Tsanuo, M. K., Hassanali, A., Hooper, A. M., Khan, Z. R., Kaberia, F., Pickett, J. A., & Wadhams, L. (2003). Isoflavanones from the allelopathic aqueous root exudates of Desmodium uncinatum. Phytochemistry, 64, 265–273.CrossRefGoogle Scholar
  76. Turlings, T. C. J., Scheepmaker, J. W. A., Vet, L. E. M., Tumlinson, J. H., & Lewis, W. J. (1990a). How contact experiences affect preferences for host-related odors in the larval parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 16, 1577–1589.CrossRefGoogle Scholar
  77. Turlings, T. C. J., Tumlinson, J. H., & Lewis, W. J. (1990b). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 250, 1251–1253.CrossRefGoogle Scholar
  78. Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Rose, U. S. R., Lewis, W. J., & Tumlinson, J. H. (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. InProceedings of the National Academy of Sciences of the United States of America (Vol. 92, pp. 4169–4174).Google Scholar
  79. World Bank. (2007). World development indicators. Washington, DC.Google Scholar
  80. World Bank. (2008). World development report 2008: Agriculture for development. Washington, DC: The World Bank.CrossRefGoogle Scholar
  81. World Resources Institute; Department of Resource Surveys and Remote Sensing, Ministry of Environment and Natural Resources, Kenya; Central bureau of Statistics, Ministry of Planning and National Development, Kenya; and International Livestock Research Institute. (2007). Nature’s benefits in Kenya: An Atlas of ecosystems and human well-being. Washington, DC and Nairobi: World Resources Institute.Google Scholar
  82. Yoder, J. I. (1999). Parasitic plant responses to host plant signals: A model for subterranean plant–plant interactions. Current Opinion in Plant Biology, 2, 65–70.CrossRefGoogle Scholar
  83. Young, R. (1979). Fall armyworm: Control with insecticides. Florida Entomologist, 62, 130–133.CrossRefGoogle Scholar
  84. Yu, S. J. (1992). Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 85, 675–682.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zeyaur R. Khan
    • 1
    Email author
  • Charles A. O. Midega
    • 1
  • Jimmy Pittchar
    • 1
  • John A. Pickett
    • 2
  1. 1.International Centre of Insect Physiology and Ecology (icipe)NairobiKenya
  2. 2.Cardiff University, School of ChemistryCardiffUK

Personalised recommendations