Skip to main content

Abstract Interpretation of CTL Properties

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11002)

Abstract

CTL is a temporal logic commonly used to express program properties. Most of the existing approaches for proving CTL properties only support certain classes of programs, limit their scope to a subset of CTL, or do not directly support certain existential CTL formulas. This paper presents an abstract interpretation framework for proving CTL properties that does not suffer from these limitations. Our approach automatically infers sufficient preconditions, and thus provides useful information even when a program satisfies a property only for some inputs. We systematically derive a program semantics that precisely captures CTL properties by abstraction of the operational trace semantics of a program. We then leverage existing abstract domains based on piecewise-defined functions to derive decidable abstractions that are suitable for static program analysis. To handle existential CTL properties, we augment these abstract domains with under-approximating operators. We implemented our approach in a prototype static analyzer. Our experimental evaluation demonstrates that the analysis is effective, even for CTL formulas with non-trivial nesting of universal and existential path quantifiers, and performs well on a wide variety of benchmarks.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99725-4_24
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-99725-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  2. Bakhirkin, A., Piterman, N.: Finding recurrent sets with backward analysis and trace partitioning. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 17–35. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_2

    CrossRef  Google Scholar 

  3. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Static analysis and verification of aerospace software by abstract interpretation. In: AIAA, pp. 1–38 (2010)

    Google Scholar 

  4. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–882. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_61

    CrossRef  Google Scholar 

  5. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_11

    CrossRef  Google Scholar 

  6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0025774

    CrossRef  Google Scholar 

  7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    CrossRef  Google Scholar 

  8. Cook, B., Khlaaf, H., Piterman, N.: Faster temporal reasoning for infinite-state programs. In: FMCAD, pp. 75–82 (2014)

    Google Scholar 

  9. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 13–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_2

    CrossRef  MATH  Google Scholar 

  10. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI, pp. 219–230 (2013)

    Google Scholar 

  11. Cook, B., Koskinen, E., Vardi, M.: Temporal property verification as a program analysis task. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 333–348. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_26

    CrossRef  Google Scholar 

  12. Cook, B., Koskinen, E., Vardi, M.Y.: Temporal property verification as a program analysis task - extended version. Formal Methods Syst. Des. 41(1), 66–82 (2012)

    CrossRef  Google Scholar 

  13. Courant, N., Urban, C.: Precise widening operators for proving termination by abstract interpretation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 136–152. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_8

    CrossRef  Google Scholar 

  14. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoret. Comput. Sci. 277(1–2), 47–103 (2002)

    MathSciNet  CrossRef  Google Scholar 

  15. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Symposium on Programming, pp. 106–130 (1976)

    Google Scholar 

  16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  17. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL, pp. 12–25 (2000)

    Google Scholar 

  18. Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In: POPL, pp. 245–258(2012)

    Google Scholar 

  19. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–96 (1978)

    Google Scholar 

  20. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory: a new approach to LTL software model checking. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 49–66. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_4

    CrossRef  Google Scholar 

  21. Giacobazzi, R., Ranzato, F.: Incompleteness of states w.r.t. traces in model checking. Inf. Comput. 204(3), 376–407 (2006)

    MathSciNet  CrossRef  Google Scholar 

  22. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-termination. In: POPL, pp. 147–158 (2008)

    Google Scholar 

  23. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: a software model-checker for verification and refutation. In: CAV, pp. 170–174 (2006)

    Google Scholar 

  24. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

    CrossRef  Google Scholar 

  25. Koskinen, E.: Temporal verification of programs. Ph.D. thesis, University of Cambridge, November 2012

    Google Scholar 

  26. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    MathSciNet  CrossRef  Google Scholar 

  27. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)

    Google Scholar 

  28. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–410 (1990)

    Google Scholar 

  29. Manna, Z., Pnueli, A.: The Temporal Verification of Reactive Systems: Progress (1996)

    Google Scholar 

  30. Miné, A.: The octagon abstract domain. High. Order Symbolic Comput. 19(1), 31–100 (2006)

    MathSciNet  CrossRef  Google Scholar 

  31. Miné, A.: Inferring sufficient conditions with backward polyhedral under-approximations. Electron. Notes Theor. Comput. Sci. 287, 89–100 (2012)

    CrossRef  Google Scholar 

  32. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, (1999)

    CrossRef  Google Scholar 

  33. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)

    Google Scholar 

  34. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41 (2004)

    Google Scholar 

  35. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM TOPLAS 29(5), 26 (2007)

    CrossRef  Google Scholar 

  36. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theoret. Comput. Sci. 549, 127–145 (2014)

    MathSciNet  CrossRef  Google Scholar 

  37. Ueltschi, S.: Proving temporal properties by abstract interpretation. Master’s thesis, ETH Zurich, Zurich, Switzerland (2017)

    Google Scholar 

  38. Urban, C.: Static Analysis by abstract interpretation of functional temporal properties of programs. Ph.D. thesis, École Normale Supérieure, Paris, France, July 2015

    Google Scholar 

  39. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional termination. In: SAS, pp. 302–318 (2014)

    Google Scholar 

  40. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions. In: ESOP, pp. 412–431 (2014)

    Google Scholar 

  41. Urban, C., Miné, A.: Inference of ranking functions for proving temporal properties by abstract interpretation. Comput. Lang. Syst. Struct. 47, 77–103 (2017)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Urban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Urban, C., Ueltschi, S., Müller, P. (2018). Abstract Interpretation of CTL Properties. In: Podelski, A. (eds) Static Analysis. SAS 2018. Lecture Notes in Computer Science(), vol 11002. Springer, Cham. https://doi.org/10.1007/978-3-319-99725-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99725-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99724-7

  • Online ISBN: 978-3-319-99725-4

  • eBook Packages: Computer ScienceComputer Science (R0)