Advertisement

Pragmatic Information Extraction in Brazilian Portuguese Documents

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11122)

Abstract

The volume of published data in the Web has been increasing, and a great amount of those data is available in a natural language format. Manually analyzing each document is a time-consuming and tedious task. Thus, Open IE area emerges to help the extraction of semantic relationships in a large number of texts written in a natural language from different domains. Although a semantic analysis does not guarantee complete accuracy in extracting relations, a pragmatic analysis becomes important on Open EI to identify additional meanings (unsaid) that goes beyond semantics in a text. Our work developed a method for Open Information Extraction to extract relations from texts written in Portuguese in a first pragmatic level. We stated that a first pragmatic level deals with inferential, contextual and intentional aspects. We evaluate our approach, and our results outstand the most relevant related work on comparing accuracy and minimality measures.

Keywords

Open information extraction Inference Context Intention Pragmatic 

Notes

Acknowledgement

Authors would like to thank FAPESB BOL3288/2015 for finantial support.

References

  1. 1.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. IJCAI 7, 2670–2676 (2007)Google Scholar
  2. 2.
    Banko, M., Etzioni, O., Center, T.: The tradeoffs between open and traditional relation extraction. In: ACL, vol. 8, pp. 28–36. Association for Computational Linguistics, Stroudsburg (2008)Google Scholar
  3. 3.
    Bast, H., Haussmann, E.: Open information extraction via contextual sentence decomposition. In: 2013 IEEE Seventh International Conference on Semantic Computing (ICSC), ICSC 2013, pp. 154–159. IEEE, Irvine (2013)Google Scholar
  4. 4.
    Bast, H., Haussmann, E.: More informative open information extraction via simple inference. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 585–590. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06028-6_61CrossRefGoogle Scholar
  5. 5.
    Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist. 22(2), 249–254 (1996). http://dl.acm.org/citation.cfm?id=230386.230390
  6. 6.
    da Costa, J.C.: A teoria inferencial das implicaturas: descrição do modelo clássico de grice. Letras de Hoje 44(3) (2009)Google Scholar
  7. 7.
    Del Corro, L., Gemulla, R.: Clausie: Clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 355–366. ACM, New York (2013).  https://doi.org/10.1145/2488388.2488420
  8. 8.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 1535–1545. Association for Computational Linguistics, Stroudsburg (2011). http://dl.acm.org/citation.cfm?id=2145432.2145596
  9. 9.
    Gamallo, P., Garcia, M.: Multilingual open information extraction. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 711–722. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23485-4_72CrossRefGoogle Scholar
  10. 10.
    Grice, H.P.: Studies in the Way of Words. Harvard University Press (1989)Google Scholar
  11. 11.
    Mausam, M.S., Bart, R., Soderland, S., Etzioni, O.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, pp. 523–534. Association for Computational Linguistics, Stroudsburg (2012). http://dl.acm.org/citation.cfm?id=2390948.2391009
  12. 12.
    de Oliveira, L.S., Glauber, R., Claro, D.B.: Dependentie: an open information extraction system on portuguese by a dependence analysis. Encontro Nacional de Inteligência Artificial e Computacional (2017)Google Scholar
  13. 13.
    Sena, C.F.L., Glauber, R., Claro, D.B.: Inference approach to enhance a portuguese open information extraction. In: Proceedings of the 19th International Conference on Enterprise Information Systems, ICEIS, vol. 1, pp. 442–451. INSTICC, ScitePress, Porto, Portugal (2017).  https://doi.org/10.5220/0006338204420451
  14. 14.
    Wu, F., Weld, D.S.: Open information extraction using wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL 2010, pp. 118–127. Association for Computational Linguistics, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1858681.1858694

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Formalisms and Semantic Applications Research Group (FORMAS)LaSiD/DCC/IME – Federal University of Bahia (UFBA)SalvadorBrazil

Personalised recommendations