Personality Recognition from Facebook Text

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11122)


This work concerns a study in the Natural Language Processing field aiming to recognise personality traits in Portuguese written text. To this end, we first built a corpus of Facebook status updates labelled with the personality traits of their authors, from which we trained a number of computational models of personality recognition. The models include a range of alternatives ranging from a standard approach relying on lexical knowledge from the LIWC dictionary and others, to purely text-based methods such as bag of words, word embeddings and others. Results suggest that word embedding models slightly outperform the alternatives under consideration, with the advantage of not requiring any language-specific lexical resources.


Big Five Personality recognition 



The second author received supported from grant # 2016/14223-0, São Paulo Research Foundation (FAPESP).


  1. 1.
    Allport, F.H., Allport, G.W.: Personality traits: their classification and measurement. J. Abnorm. Soc. Psychol. 16, 6–40 (1921)Google Scholar
  2. 2.
    Goldberg, L.R.: An alternative description of personality: the Big-Five factor structure. J. Pers. Soc. Psychol. 59, 1216–1229 (1990)CrossRefGoogle Scholar
  3. 3.
    de Andrade, J.M.: Evidências de validade do inventário dos cinco grandes fatores de personalidade para o Brasil. Ph.D. thesis, Universidade de Brasília (2008)Google Scholar
  4. 4.
    Oberlander, J., Nowson, S.: Whose thumb is it anyway? Classifying author personality from weblog text. In: COLING/ACL-2006 Poster Sessions, Sydney, Australia, Association for Computational Linguistics, pp. 627–634 (2006)Google Scholar
  5. 5.
    Celli, F.: Adaptive personality recognition from text. Ph.D. thesis, University of Trento (2012)Google Scholar
  6. 6.
    Argamon, S., Dhawle, S., Koppel, M., Pennebaker, J.W.: Lexical predictors of personality type. In: The Joint Annual Meeting of the Interface and the Classification Society of North America (2005)Google Scholar
  7. 7.
    Mairesse, F., Walker, M., Mehl, M., Moore, R.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. (JAIR) 30, 457–500 (2007)CrossRefGoogle Scholar
  8. 8.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Inquiry and Word Count: LIWC. Lawrence Erlbaum, Mahwah (2001)Google Scholar
  9. 9.
    Coltheart, M.: The MRC psycholinguistic database. Q. J. Exp. Psychol. Sect. A: Hum. Exp. Psychol. 33(4), 497–505 (1981)CrossRefGoogle Scholar
  10. 10.
    Nowson, S., Oberlander, J.: Identifying more bloggers: towards large scale personality classification of personal weblogs. In: Proceedings of the International Conference on Weblogs and Social Media, Boulder, Colorado, USA (2007)Google Scholar
  11. 11.
    Kosinski, M., Matz, S., Gosling, S., Popov, V., Stillwell, D.: Facebook as a social science research tool: opportunities, challenges, ethical considerations and practical guidelines. Am. Psychol. 70(6), 543–556 (2015)CrossRefGoogle Scholar
  12. 12.
    John, O.P., Naumann, L.P., Soto, C.J.: Paradigm Shift to the Integrative Big-Five Trait Taxonomy: History, Measurement, and Conceptual Issues, pp. 114–158. Guilford Press, New York (2008)Google Scholar
  13. 13.
    Filho, P.P.B., Aluísio, S.M., Pardo, T.: An evaluation of the Brazilian Portuguese LIWC dictionary for sentiment analysis. In: 9th Brazilian Symposium in Information and Human Language Technology - STIL, Fortaleza, Brazil, pp. 215–219 (2013)Google Scholar
  14. 14.
    dos Santos, L.B., Duran, M.S., Hartmann, N.S., Candido, A., Paetzold, G.H., Aluisio, S.M.: A lightweight regression method to infer psycholinguistic properties for Brazilian Portuguese. In: Ekštein, K., Matoušek, V. (eds.) TSD 2017. LNCS (LNAI), vol. 10415, pp. 281–289. Springer, Cham (2017). Scholar
  15. 15.
    Mikolov, T., Wen-tau, S., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT-2013, Atlanta, USA, pp. 746–751. Association for Computational Linguistics (2013)Google Scholar
  16. 16.
    Ramos Casimiro, C., Paraboni, I.: Temporal aspects of content recommendation on a microblog corpus. In: Baptista, J., Mamede, N., Candeias, S., Paraboni, I., Pardo, T.A.S., Volpe Nunes, M.G. (eds.) PROPOR 2014. LNCS (LNAI), vol. 8775, pp. 189–194. Springer, Cham (2014). Scholar
  17. 17.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of Machine Learning Research, PMLR, Beijing, China, vol. 32, no. 2, pp. 1188–1196 (2014)Google Scholar
  18. 18.
    Ramos, R.M.S., Neto, G.B.S., Silva, B.B.C., Monteiro, D.S., Paraboni, I., Dias, R.F.S.: Building a corpus for personality-dependent natural language understanding and generation. In: 11th International Conference on Language Resources and Evaluation (LREC-2018), ELRA, Miyazaki, Japan, pp. 1138–1145 (2018)Google Scholar
  19. 19.
    dos Santos, V.G., Paraboni, I., Silva, B.B.C.: Big Five personality recognition from multiple text genres. In: Ekštein, K., Matoušek, V. (eds.) TSD 2017. LNCS (LNAI), vol. 10415, pp. 29–37. Springer, Cham (2017). Scholar
  20. 20.
    Hsieh, F.C., Dias, R.F.S., Paraboni, I.: Author profiling from facebook corpora. In: 11th International Conference on Language Resources and Evaluation (LREC-2018), ELRA, Miyazaki, Japan, pp. 2566–2570 (2018)Google Scholar
  21. 21.
    Silva, B.B.C., Paraboni, I.: Learning personality traits from Facebook text. IEEE Lat. Am. Trans. 16(4), 1256–1262 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Arts, Sciences and HumanitiesUniversity of São PauloSão PauloBrazil

Personalised recommendations