Smart Service Lifecycle Management: A Framework and Use Case

  • Mike FreitagEmail author
  • Stefan Wiesner
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 536)


This paper focuses on the growing importance of offering Smart Services by manufacturing companies, which are enabled through the increasing amount of data available following Industry 4.0 implementation. Gradually, product-oriented industries are turning into service-oriented industries, where customers are much more involved in developing and delivering services than in developing and delivering products. The ability to offer Smart Services creates a competitive advantage for a company, as it can provide individually configured value-added services to the customer. However, expert interviews and work with industrial use cases show that the knowledge how to realize such Smart Services is still rudimental, in spite of high expectations. Therefore, a Smart Service Lifecycle Management is introduced, formalizing the support needs of the industry and the phases of the lifecycle in a framework, covering business, service and network elements. Parts of this framework has been successfully applied to develop a Monitoring Service for an industrial use case in video surveillance.


Smart Service Industry 4.0 Service Lifecycle Service Engineering Product-Service System 



This work has been partly funded by the European Commission through the FoF-Project “PSYMBIOSYS” (No. 636804) and by the German Federal Ministry of Education and Research (BMBF) through the Project “iSrv. Intelligente Servicesysteme” (No. 169110). The authors wish to acknowledge the Commission, the Ministry and all the project partners for their contribution.


  1. 1.
    Spohrer, J.C., Maglio, P.P.: Toward a science of service systems. In: Kieliszewski, C.A., et al. (eds.) Handbook of Service Science, pp. 157–194. Springer, New York (2010). Scholar
  2. 2.
    Freitag, M., Ganz, W.: InnoScore® service. Evaluating innovation for product-related services. In: Service Research & Innovation Institute (eds.) Annual SRII Global Conference 2011, Proceedings IEEE, Piscataway, NJ, pp. 214–221 (2011)Google Scholar
  3. 3.
    Qu, M., Yu, S., Chen, D., Chu, J., Tian, B.: State-of-the-art of design, evaluation, and operation methodologies in product service systems. Comput. Ind. 77, 1–14 (2016)CrossRefGoogle Scholar
  4. 4.
    Pezzotta, G., Pirola, F., Pinto, R., Akasaka, F., Shimomura, Y.: A service engineering framework to design and assess an integrated product-service. Mechatronics 31, 169–179 (2015)CrossRefGoogle Scholar
  5. 5.
    Pezzotta, G., Pinto, R., Pirola, F., Ouertani, M.Z.: Balancing product-service provider’s performance and customer’s value: the service engineering methodology (SEEM). Proc. CIRP 16, 50–55 (2014)CrossRefGoogle Scholar
  6. 6.
    Wiesner, S., Freitag, M., Westphal, I., Thoben, K.-D.: Interactions between service and product lifecycle management. Proc. CIRP 30, 36–41 (2015)CrossRefGoogle Scholar
  7. 7.
    Westphal, I., Freitag, M., Thoben, K.-D.: Visualization of interactions between product and service lifecycle management. IFIP Adv. Inf. Commun. Technol. 2015(460), 575–582 (2015)CrossRefGoogle Scholar
  8. 8.
    Goedkoop, M.J., van Halen, C.J.G., te Riele, H.R.M., Rommens, P.J.M.: Product service systems, ecological and economic basics. Report for Dutch Ministries of Environment (VROM) and Economic Affairs (EZ) (1999)Google Scholar
  9. 9.
    Tukker, A.: Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet. Bus. Strategy Environ. 13(4), 246–260 (2004)CrossRefGoogle Scholar
  10. 10.
    Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product Realisation. Springer, New York (2011). Scholar
  11. 11.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the internet of things. Comput. Aided Des. 43(5), 479–501 (2011)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Wiesner, S., Thoben, K.-D.: Cyber-physical product-service systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 63–88. Springer, Cham (2017). Scholar
  14. 14.
  15. 15.
    iSrv. Intelligente Servicesysteme. Accessed 09 Apr 2018
  16. 16.
    Wiesner, S., Nilsson, S., Thoben, K.-D.: Integrating requirements engineering for different domains in system development – lessons learnt from industrial SME cases. Proc. CIRP 64, 351–356 (2017)CrossRefGoogle Scholar
  17. 17.
    Freitag, M., Kremer, D., Hirsch, M., Zelm, M.: An approach to standardise a service life cycle management. In: Zelm, M., van Sinderen, M., Pires, L.F., Doumeingts, G. (eds.) Enterprise Interoperability, pp. 115–126. Wiley, Chichester (2013)Google Scholar
  18. 18.
    Freitag, M., Hämmerle, O.: Smart service lifecycle management. Ein Vorgehensmodell für produzierende Unternehmen 106(7/8), 477–482 (2016). wt Werkstattstechnik onlineGoogle Scholar
  19. 19.
    Freitag, M., Hämmerle, O., Hans, C.: Smart service lifecycle management in der Luftfahrtindustrie. In: Smart Services und Internet der Dinge: Geschäftsmodelle, Umsetzung und Best Practices, pp. 73–89. Carl Hanser Verlag, München (2017)Google Scholar
  20. 20.
    Hans, C., Kirste, S., Westphal, I., Wiesner, S.: Product-service systems – neue Marktpotenziale für den Mittelstand. In: Jahresbericht der Gemeinnützigen Gesellschaft zur Förderung des Forschungstransfers e.V., pp. 22–27. Accessed 08 June 2018

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Fraunhofer IAOStuttgartGermany
  2. 2.BIBA – Bremer Institut für Produktion und Logistik GmbH at the University of BremenBremenGermany

Personalised recommendations