Skip to main content

Radiation-Induced Pain Syndromes

  • Chapter
  • First Online:
  • 1641 Accesses

Abstract

Radiation-induced pain syndromes are an unfortunate consequence of radiation therapy administered during the treatment of various malignancies. It often manifests several months to years after completion of radiotherapy, with the diagnosis complicated by concern for local cancer recurrence. Pain syndromes due to radiation can be characterized based on anatomic location and specific tissues affected. Several radiation-induced pain syndromes have been described along with proposed pathophysiological mechanisms of injury. Common risk factors include total radiation dose, fractionation schedule, and radiation field size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van den Beuken-van Everdingen MH, De Rijke JM, Kessels AG, Schouten HC, Van Kleef M, Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18(9):1437–49.

    Article  PubMed  Google Scholar 

  2. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment. Cancer. 2005;104(6):1129–37.

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  4. Hubenak JR, Zhang Q, Branch CD, Kronowitz SJ. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg. 2014;133(1):49e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao W, Diz DI, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. Br J Radiology. 2007;80(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  6. Rzeszowska-Wolny J, Przybyszewski WM, Widel M. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur J Pharmacol. 2009;625(1):156–64.

    Article  CAS  PubMed  Google Scholar 

  7. Begg AC. Can the severity of normal tissue damage after radiation therapy be predicted? PLoS Med. 2006;3(10):e440.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wong PC, Dodd MJ, Miaskowski C, Paul SM, Bank KA, Shiba GH, Facione N. Mucositis pain induced by radiation therapy: prevalence, severity, and use of self-care behaviors. J Pain Symptom Manag. 2006;32(1):27–37.

    Article  Google Scholar 

  9. Dirix P, Nuyts S, Van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer. Cancer. 2006;107(11):2525–34.

    Article  PubMed  Google Scholar 

  10. Pico JL, Avila-Garavito A, Naccache P. Mucositis: its occurrence, consequences, and treatment in the oncology setting. Oncologist. 1998;3(6):446–51.

    CAS  PubMed  Google Scholar 

  11. Cooper JS, Fu K, Marks J, Silverman S. Late effects of radiation therapy in the head and neck region. Int J Radiat Oncol Biol Phys. 1995;31(5):1141–64.

    Article  CAS  PubMed  Google Scholar 

  12. Scully C, Epstein J, Sonis S. Oral mucositis: a challenging complication of radiotherapy, chemotherapy, and radiochemotherapy: part 1, pathogenesis and prophylaxis of mucositis. Head Neck. 2003;25(12):1057–70.

    Article  PubMed  Google Scholar 

  13. Teng MS, Futran ND. Osteoradionecrosis of the mandible. Curr Opin Otolaryngol Head Neck Surg. 2005;13(4):217–21.

    Article  PubMed  Google Scholar 

  14. Yeoh A, Gibson R, Yeoh E, Bowen J, Stringer A, Giam K, Logan R, Keefe D. Radiation therapy-induced mucositis: relationships between fractionated radiation, NF-κB, COX-1, and COX-2. Cancer Treat Rev. 2006;32(8):645–51.

    Article  CAS  PubMed  Google Scholar 

  15. Classen J, Belka C, Paulsen F, Budach W, Hoffmann W, Bamberg M. Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlenther Onkol. 1998;174:82–4.

    Article  PubMed  Google Scholar 

  16. Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: symptoms, risk factors and mechanisms. World J Gastroenterol. 2013;19(2):185–98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bye A, Tropé C, Loge JH, Hjermstad M, Kaasa S. Health-related quality of life and occurrence of intestinal side effects after pelvic radiotherapy: evaluation of long-term effects of diagnosis and treatment. Acta Oncol. 2000;39(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  18. Brown MR, Ramirez JD, Farquhar-Smith P. Pain in cancer survivors. Br J Pain. 2014;8(4):139–53.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Levy MH, Chwistek M, Mehta RS. Management of chronic pain in cancer survivors. Cancer J. 2008;14(6):401–9.

    Article  PubMed  Google Scholar 

  20. Kolla SB, Dash A. Radiation cystitis: acute and chronic. In: Radiation therapy for pelvic malignancy and its consequences. New York: Springer; 2015. p. 111–8.

    Google Scholar 

  21. Parker RG, Berry HC. Late effects of therapeutic irradiation on the skeleton and bone marrow. Cancer. 1976;37(S2):1162–71.

    Article  CAS  PubMed  Google Scholar 

  22. Bluemke DA, Fishman EK, Scott WW Jr. Skeletal complications of radiation therapy. Radiographics. 1994;14(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  23. Massin PH, Duparc JA. Total hip replacement in irradiated hips. A retrospective study of 71 cases. J Bone Joint Surg. 1995;77(6):847–52.

    Article  CAS  Google Scholar 

  24. Baxter NN, Habermann EB, Tepper JE, Durham SB, Virnig BA. Risk of pelvic fractures in older women following pelvic irradiation. JAMA. 2005;294(20):2587–93.

    Article  CAS  PubMed  Google Scholar 

  25. Reimer NB, Nystrom LM, Dean CW. Miscellaneous pelvic effects: pelvic/sacral insufficiency fractures. In: Radiation therapy for pelvic malignancy and its consequences. New York: Springer; 2015. p. 167–80.

    Google Scholar 

  26. Paice JA. Chronic treatment-related pain in cancer survivors. Pain. 2011;152(3):S84–9.

    Article  PubMed  Google Scholar 

  27. Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73(2):119–31.

    Article  PubMed  Google Scholar 

  28. Martin M, Lefaix JL, Delanian S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000 May 1;47(2):277–90.

    Article  CAS  Google Scholar 

  29. Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30(4):755–63.

    Article  CAS  PubMed  Google Scholar 

  30. Stoll BA, Andrews JT. Radiation-induced peripheral neuropathy. Br Med J. 1966;1(5491):834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maier JG, Perry RH, Saylor W, Sulak MH. Radiation myelitis of the dorsolumbar spinal cord. Radiology. 1969;93(1):153–60.

    Article  CAS  PubMed  Google Scholar 

  32. Johansson S, Svensson H, Denekamp J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2002;52(5):1207–19.

    Article  PubMed  Google Scholar 

  33. Thomas JE, Cascino TL, Earle JD. Differential diagnosis between radiation and tumor plexopathy of the pelvis. Neurology. 1985;35(1):1.

    Article  CAS  PubMed  Google Scholar 

  34. Delanian S, Pradat PF. Posteriori conformal radiotherapy using three-dimensional dosimetric reconstitution in a survivor of adult-onset Hodgkin’s disease for definitive diagnosis of lower motor neuron disease. J Clin Oncol. 2010;28(30):e599–601.

    Article  PubMed  Google Scholar 

  35. Ashenhurst EM, Quartey GR, Starreveld A. Lumbo-sacral radiculopathy induced by radiation. Can J Neurol Sci. 1977;4(04):259–63.

    Article  CAS  PubMed  Google Scholar 

  36. Powell S, Cooke J, Parsons C. Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol. 1990;18(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  37. Rawlings G, Arriagada R, Fontaine F, Bouhnik H, Mouriesse H, Sarrazin D. Radiation-induced brachial plexopathy. Bull Cancer. 1983;70(2):77–83.

    CAS  PubMed  Google Scholar 

  38. Kori SH, Foley KM, Posner JB. Brachial plexus lesions in patients with cancer= 100 cases. Neurology. 1981;31(1):45.

    Article  CAS  PubMed  Google Scholar 

  39. Bajrovic A, Rades D, Fehlauer F, Tribius S, Hoeller U, Rudat V, Jung H, Alberti W. Is there a life-long risk of brachial plexopathy after radiotherapy of supraclavicular lymph nodes in breast cancer patients? Radiother Oncol. 2004;71(3):297–301.

    Article  PubMed  Google Scholar 

  40. Kori SH. Diagnosis and management of brachial plexus lesions in cancer patients. Oncology (Williston Park, NY). 1995 Aug;9(8):756–760.

    Google Scholar 

  41. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273–82.

    Article  PubMed  Google Scholar 

  42. Killer HE, Hess K. Natural history of radiation-induced brachial plexopathy compared with surgically treated patients. J Neurol. 1990;237(4):247–50.

    Article  CAS  PubMed  Google Scholar 

  43. Roth G, Magistris MR, Le Fort D, Desjacques P. Post-radiation brachial plexopathy. Persistent conduction block. Myokymic discharges and cramps. Rev Neurol. 1987;144(3):173–80.

    Google Scholar 

  44. Pradat PF, Delanian S. Late radiation injury to peripheral nerves. Handb Clin Neurol. 2012;115:743–58.

    Article  Google Scholar 

  45. Merrell RT. Radiation-induced lumbosacral plexopathy. In: Radiation therapy for pelvic malignancy and its consequences. New York: Springer; 2015. p. 181–7.

    Google Scholar 

  46. Feistner H, Weissenborn K, Münte TF, Heinze HJ, Malin JP. Post-irradiation lesions of the caudal roots. Acta Neurol Scand. 1989;80(4):277–81.

    Article  CAS  PubMed  Google Scholar 

  47. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.

    Article  PubMed  Google Scholar 

  48. Flickinger JC. Cranial nerves. In: Human radiation injury. Philadelphia: Lippincott Williams Wilkins; 2011. p. 210–6.

    Google Scholar 

  49. Berger PS, Bataini JP. Radiation-induced cranial nerve palsy. Cancer. 1977;40(1):152–5.

    Article  CAS  PubMed  Google Scholar 

  50. Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53(8):574–80.

    Article  CAS  PubMed  Google Scholar 

  51. Schultheiss TE. The radiation dose–response of the human spinal cord. Int J Radiat Oncol Biol Phys. 2008;71(5):1455–9.

    Article  PubMed  Google Scholar 

  52. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3):S42–9.

    Article  PubMed  Google Scholar 

  53. Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA. Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery. 2009;64(2):A67–72.

    Article  PubMed  Google Scholar 

  54. Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv. 2004;4(5):273.

    Article  CAS  PubMed  Google Scholar 

  55. New P. Radiation injury to the nervous system. Curr Opin Neurol. 2001;14(6):725–34.

    Article  CAS  PubMed  Google Scholar 

  56. Daly ME, Gibbs IC. Spinal radiosurgery: delayed radiation-induced myelopathy. In: Tumors of the central nervous system, vol. 6. Dordrecht: Springer Netherlands; 2012. p. 135–40.

    Google Scholar 

  57. Okada S, Okeda R. Pathology of radiation myelopathy. Neuropathology. 2001;21(4):247–65.

    Article  CAS  PubMed  Google Scholar 

  58. Stephans KL, Djemil T, Tendulkar RD, Robinson CG, Reddy CA, Videtic GM. Prediction of chest wall toxicity from lung stereotactic body radiotherapy (SBRT). Int J Radiat Oncol Biol Phys. 2012;82(2):974–80.

    Article  PubMed  Google Scholar 

  59. Din SU, Williams EL, Jackson A, Rosenzweig KE, Wu AJ, Foster A, Yorke ED, Rimner A. Impact of fractionation and dose in a multivariate model for radiation-induced chest wall pain. Int J Radiat Oncol Biol Phys. 2015;93(2):418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Andolino DL, Forquer JA, Henderson MA, Barriger RB, Shapiro RH, Brabham JG, Johnstone PA, Cardenes HR, Fakiris AJ. Chest wall toxicity after stereotactic body radiotherapy for malignant lesions of the lung and liver. Int J Radiat Oncol Biol Phys. 2011;80(3):692–7.

    Article  PubMed  Google Scholar 

  61. Mutter RW, Liu F, Abreu A, Yorke E, Jackson A, Rosenzweig KE. Dose–volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1783–90.

    Article  PubMed  Google Scholar 

  62. Creach KM, El Naqa I, Bradley JD, Olsen JR, Parikh PJ, Drzymala RE, Bloch C, Robinson CG. Dosimetric predictors of chest wall pain after lung stereotactic body radiotherapy. Radiother Oncol. 2012;104(1):23–7.

    Article  PubMed  Google Scholar 

  63. Welsh J, Thomas J, Shah D, Allen PK, Wei X, Mitchell K, Gao S, Balter P, Komaki R, Chang JY. Obesity increases the risk of chest wall pain from thoracic stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(1):91–6.

    Article  PubMed  Google Scholar 

  64. Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K, Schefter TE, Kavanagh BD, Larner JM. Chest wall volume receiving> 30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):796–801.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmit Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brar, J., Chen, G.H., Gulati, A. (2019). Radiation-Induced Pain Syndromes. In: Gulati, A., Puttanniah, V., Bruel, B., Rosenberg, W., Hung, J. (eds) Essentials of Interventional Cancer Pain Management. Springer, Cham. https://doi.org/10.1007/978-3-319-99684-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99684-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99682-0

  • Online ISBN: 978-3-319-99684-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics