Resource Based Cooperative Games: Optimization, Fairness and Stability

  • Ta Duy NguyenEmail author
  • Yair Zick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11059)


We study the class of resource-based coalitional games. We provide efficient algorithms to compute solution concepts for weighted voting games, threshold task games and r-weighted voting games; in particular, we compute approximately optimal coalition structures, and present non-trivial bounds on the cost of stability for these classes; in particular, we improve upon the bounds given in [2] for weighted voting games.


Cooperative games Cost of stability Optimal coalition structure generation 


  1. 1.
    Anshelevich, E., Sekar, S.: Computing stable coalitions: approximation algorithms for reward sharing. In: Proceedings of the 11th Conference on Web and Internet Economics (WINE), pp. 31–45 (2015)Google Scholar
  2. 2.
    Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein, J.S.: The cost of stability in coalitional games. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 122–134. Springer, Heidelberg (2009). Scholar
  3. 3.
    Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structure generation in cooperative graph games. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), pp. 81–87 (2013)Google Scholar
  4. 4.
    Bachrach, Y., Meir, R., Jung, K., Kohli, P.: Coalitional structure generation in skill games. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), vol. 10, pp. 703–708 (2010)Google Scholar
  5. 5.
    Balcan, M., Procaccia, A., Zick, Y.: Learning cooperative games. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 475–481 (2015)Google Scholar
  6. 6.
    Bistaffa, F., Farinelli, A., Chalkiadakis, G., Ramchurn, S.D.: A cooperative game-theoretic approach to the social ridesharing problem. Artif. Intell. 246, 86–117 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bousquet, N., Li, Z., Vetta, A.: Coalition games on interaction graphs: a horticultural perspective. In: Proceedings of the 16th ACM Conference on Economics and Computation (EC), pp. 95–112 (2015)Google Scholar
  8. 8.
    Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., Jennings, N.R.: Cooperative games with overlapping coalitions. J. Artif. Intell. Res. 39(1), 179–216 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan and Claypool, San Rafael (2011)Google Scholar
  10. 10.
    Chalkiadakis, G., Greco, G., Markakis, E.: Characteristic function games with restricted agent interactions: core-stability and coalition structures. Artif. Intell. 232, 76–113 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chalkiadakis, G., Wooldridge, M.: Weighted voting games. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Computational Social Choice, Chap. 16. Cambridge University Press (2016)Google Scholar
  12. 12.
    Deng, X., Papadimitriou, C.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI), pp. 393–397 (2008)Google Scholar
  14. 14.
    Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: On the dimensionality of voting games. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI), pp. 69–74 (2008)Google Scholar
  15. 15.
    Elkind, E., Goldberg, L., Goldberg, P., Wooldridge, M.: On the computational complexity of weighted voting games. Ann. Math. Artif. Intell. 56, 109–131 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Igarashi, A., Izsak, R., Elkind, E.: Cooperative games with bounded dependency degree. CoRR abs/1711.07310 (2017)Google Scholar
  17. 17.
    Lesca, J., Perny, P., Yokoo, M.: Coalition structure generation and CS-core: results on the tractability frontier for games represented by MC-nets. In: Proceedings of the 16th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 308–316 (2017)Google Scholar
  18. 18.
    Matsui, T., Matsui, Y.: A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Jpn. 43(1), 71–86 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Meir, R., Zick, Y., Elkind, E., Rosenschein, J.S.: Bounding the cost of stability in games over interaction networks. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), pp. 690–696 (2013)Google Scholar
  20. 20.
    Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: a survey. Artif. Intell. 229(Suppl. C), 139–174 (2015)Google Scholar
  21. 21.
    Resnick, E., Bachrach, Y., Meir, R., Rosenschein, J.S.: The cost of stability in network flow games. Math. Found. Comput. Sci. 2009, 636–650 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of ComputingNational University of SingaporeSingaporeSingapore

Personalised recommendations