Advertisement

Online Trading as a Secretary Problem

  • Elias Koutsoupias
  • Philip LazosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11059)

Abstract

We consider the online problem in which an intermediary trades identical items with a sequence of n buyers and n sellers, each of unit demand. We assume that the values of the traders are selected by an adversary and the sequence is randomly permuted. We give competitive algorithms for two objectives: welfare and gain-from-trade.

References

  1. 1.
    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp. 434–443. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007)Google Scholar
  2. 2.
    Blumrosen, L., Mizrahi, Y.: Approximating gains-from-trade in bilateral trading. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 400–413. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-54110-4_28CrossRefGoogle Scholar
  3. 3.
    Brustle, J., Cai, Y., Wu, F., Zhao, M.: Approximating gains from trade in two-sided markets via simple mechanisms. In: Proceedings of the 2017 ACM Conference on Economics and Computation, pp. 589–590. ACM (2017)Google Scholar
  4. 4.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 311–320. ACM (2010)Google Scholar
  5. 5.
    Colini-Baldeschi, R., Goldberg, P., de Keijzer, B., Leonardi, S., Turchetta, S.: Fixed price approximability of the optimal gain from trade. In: Devanur, N.R., Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 146–160. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71924-5_11CrossRefGoogle Scholar
  6. 6.
    Dimitrov, N.B., Plaxton, C.G.: Competitive weighted matching in transversal matroids. Algorithmica 62(1), 333–348 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dinitz, M.: Recent advances on the matroid secretary problem. SIGACT News 44(2), 126–142 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eden, A., Feldman, M., Vardi, A.: Online random sampling for budgeted settings. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 29–40. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66700-3_3CrossRefGoogle Scholar
  9. 9.
    Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices. In: Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pp. 123–135. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2015)Google Scholar
  10. 10.
    Giannakopoulos, Y., Koutsoupias, E., Lazos, P.: Online market intermediation. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming, ICALP ’17, (2017). Full version in CoRR: abs/1703.09279Google Scholar
  11. 11.
    Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: Proceedings of the 5th ACM conference on Electronic commerce, pp. 71–80. ACM (2004)Google Scholar
  12. 12.
    Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism design and prophet inequalities. In: AAAI, vol. 7, pp. 58–65 (2007)Google Scholar
  13. 13.
    Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40450-4_50CrossRefGoogle Scholar
  14. 14.
    Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 630–631. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2005)Google Scholar
  15. 15.
    Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02930-1_42CrossRefzbMATHGoogle Scholar
  16. 16.
    McAfee, P.R.: A dominant strategy double auction. J. Econ. Theory 56(2), 434–450 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McAfee, P.R.: The gains from trade under fixed price mechanisms. Appl. Econ. Res. Bull. 1(1), 1–10 (2008)MathSciNetGoogle Scholar
  18. 18.
    Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J. Econ. Theory 29(2), 265–281 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Segal-Halevi, E., Hassidim, A., Aumann, Y.: SBBA: a strongly-budget-balanced double-auction mechanism. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 260–272. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53354-3_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of OxfordOxfordUK

Personalised recommendations