Advertisement

A Strongly Consistent Finite Difference Scheme for Steady Stokes Flow and its Modified Equations

  • Yury A. Blinkov
  • Vladimir P. GerdtEmail author
  • Dmitry A. Lyakhov
  • Dominik L. Michels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

We construct and analyze a strongly consistent second-order finite difference scheme for the steady two-dimensional Stokes flow. The pressure Poisson equation is explicitly incorporated into the scheme. Our approach suggested by the first two authors is based on a combination of the finite volume method, difference elimination, and numerical integration. We make use of the techniques of the differential and difference Janet/Gröbner bases. In order to prove strong consistency of the generated scheme we correlate the differential ideal generated by the polynomials in the Stokes equations with the difference ideal generated by the polynomials in the constructed difference scheme. Additionally, we compute the modified differential system of the obtained scheme and analyze the scheme’s accuracy and strong consistency by considering this system. An evaluation of our scheme against the established marker-and-cell method is carried out.

Keywords

Computer algebra Difference elimination Finite difference approximation Janet basis Modified equations Stokes flow Strong consistency 

Notes

Acknowledgments

The authors are grateful to Daniel Robertz for his help with respect to the use of the packages Janet and LDA and to the anonymous referees for their suggestions. This work has been partially supported by the King Abdullah University of Science and Technology (KAUST baseline funding), the Russian Foundation for Basic Research (16-01-00080) and the RUDN University Program (5-100).

References

  1. 1.
    Adams, W.W., Loustanau, P.: Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence (1994)Google Scholar
  2. 2.
    Amodio, P., Blinkov, Y., Gerdt, V., La Scala, R.: On consistency of finite difference approximations to the Navier-Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 46–60. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02297-0_4CrossRefGoogle Scholar
  3. 3.
    Amodio, P., Blinkov, Y.A., Gerdt, V.P., La Scala, R.: Algebraic construction and numerical behavior of a new s-consistent difference scheme for the 2D Navier-Stokes equations. Appl. Math. Comput. 314, 408–421 (2017)MathSciNetGoogle Scholar
  4. 4.
    Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package Janet: II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of 6th International Workshop on Computer Algebra in Scientific Computing, CASC 2003, pp. 41–54. Technische Universität München (2003). Package Janet is freely available on the web pagehttp://wwwb.math.rwth-aachen.de/Janet/
  5. 5.
    Fancher, G.H., Lewis, J.A.: Flow of simple fluids through porous materials. Indus. Eng. Chem. Res. 25(10), 1139–1147 (1933)CrossRefGoogle Scholar
  6. 6.
    Ganzha, V.G., Vorozhtsov, E.V.: Computer-Aided Analysis of Difference Schemes for Partial Differential Equations. Wiley, New York (1996)CrossRefGoogle Scholar
  7. 7.
    Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Gröbner bases and generation of difference schemes for partial differential equations. SIGMA 2, 051 (2006)zbMATHGoogle Scholar
  8. 8.
    Gerdt, V.P., Blinkov, Y.A.: Involution and difference schemes for the Navier–Stokes equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04103-7_10CrossRefGoogle Scholar
  9. 9.
    Gerdt, V.P.: Consistency analysis of finite difference approximations to PDE systems. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 28–42. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28212-6_3CrossRefGoogle Scholar
  10. 10.
    Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry, NATO Science Series, pp. 199–225. IOS Press (2005)Google Scholar
  11. 11.
    Gerdt, V.P., Robertz, D.: Computation of difference Gröbner bases. Comput. Sci. J. Moldova 20 2(59), 203–226 (2012). Package LDA is freely available on the web page http://wwwb.math.rwth-aachen.de/Janet/
  12. 12.
    Gerdt, V.P., Robertz, D.: Consistency of finite difference approximations for linear PDE systems and its algorithmic verification. In: Watt, S.M. (ed.) ISSAC 2010, pp. 53–59. Association for Computing Machinery, New York (2010)Google Scholar
  13. 13.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. Advances in Boundary Elements, vol. 16. WIT Press, Sauthampton (2004)Google Scholar
  15. 15.
    Levin, A.: Difference Algebra. Algebra and Applications, vol. 8. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-1-4020-6947-5CrossRefzbMATHGoogle Scholar
  16. 16.
    Milne-Tompson, L.M.: Theoretical Hydrodynamics, 5th edn. Macmillan Education LTD, Banjul (1968)Google Scholar
  17. 17.
    Moin, P.: Fundamentals of Engineering Numerical Analysis, 2nd edn. Cambridge University Press, Cambridge (2010)Google Scholar
  18. 18.
    Petersson, N.A.: Stability of pressure boundary conditions for Stokes and Navier-Stokes equations. J. Comput. Phys. 172, 40–70 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-01287-7CrossRefzbMATHGoogle Scholar
  20. 20.
    Shokin, Y.I.: The Method of Differential Approximation. Springer, Berlin (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yury A. Blinkov
    • 1
  • Vladimir P. Gerdt
    • 2
    • 3
    Email author
  • Dmitry A. Lyakhov
    • 4
  • Dominik L. Michels
    • 4
  1. 1.Saratov State UniversitySaratovRussian Federation
  2. 2.Joint Institute for Nuclear ResearchDubnaRussian Federation
  3. 3.Peoples’ Friendship University of RussiaMoscowRussian Federation
  4. 4.King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations