Skip to main content

Splitting Permutation Representations of Finite Groups by Polynomial Algebra Methods

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11077))

Included in the following conference series:

Abstract

An algorithm for splitting permutation representations of a finite group over fields of characteristic zero into irreducible components is described. The algorithm is based on the fact that the components of the invariant inner product in invariant subspaces are operators of projection into these subspaces. An important part of the algorithm is the solution of systems of quadratic equations. A preliminary implementation of the algorithm splits representations up to dimensions of hundreds of thousands. Examples of computations are given in the appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Las Vegas algorithm is a randomized algorithm, each iteration of which either produces the correct result, or reports a failure. An algorithm of this type always gives the correct answer, but the run time is indeterminate.

  2. 2.

    The solution is always algorithmically realizable, since the problem involves only polynomial equations with abelian Galois groups.

  3. 3.

    It is well known that any solution of the matrix equation can be represented as where is an arbitrary invertible .

References

  1. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  2. Parker, R.: The computer calculation of modular characters (the Meat-Axe). In: Atkinson, M.D. (ed.) Computational Group Theory, pp. 267–274. Academic Press, London (1984)

    Google Scholar 

  3. Kornyak, V.V.: Quantum models based on finite groups. J. Phys.: Conf. Ser. 965, 012023 (2018). http://stacks.iop.org/1742-6596/965/i=1/a=012023

  4. Kornyak, V.V.: Modeling quantum behavior in the framework of permutation groups. EPJ Web Conf. 173, 01007 (2018). https://doi.org/10.1051/epjconf/201817301007

    Article  Google Scholar 

  5. Cameron, P.J.: Permutation Groups. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C., Steel, A.: Solving Problems with Magma. University of Sydney. http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf

  7. Wilson, R., et al.: Atlas of finite group representations. http://brauer.maths.qmul.ac.uk/Atlas/v3

Download references

Acknowledgments

I am grateful to Yu.A. Blinkov, V.P. Gerdt and R.A. Wilson for fruitful discussions and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Kornyak .

Editor information

Editors and Affiliations

A Examples of Computations

A Examples of Computations

  • Generators of representations are taken from the section “Sporadic groups” of the Atlas [7].

  • For a group

    • denotes the Schur multiplier, the nd homology group ,

    • denotes the outer automorphism group of ,

    • denotes a covering group of , a central extension of by .

  • The results presented below assume the following ordering for the centralizer ring basis matrices

    The matrices within the first sublist are ordered by the rule: if , where . The same rule is applied to the first elements of the pairs of asymmetric matrices.

  • Representations are denoted by their dimensions in bold (possibly with some signs added to distinguish different representations of the same dimension). Permutation representations are underlined. Multiple subrepresentations are underbraced in the decompositions.

  • We omit the irreducible projectors related to the trivial subrepresentation: these projectors have the standard form .

  • All timing data refer to a PC with 3.30 GHz Intel Core i3 2120 CPU.

1.1 A.1 Higman–Sims Group

Main properties:

\(\varvec{11200}\)-dimensional Representation of \(\varvec{2.HS}\) 

Rank: . Suborbit lengths:

Time C: s. Time Maple: h min s.

1.2 A.2 Held Group

Main properties:

 

\(\varvec{29155}\)-dimensional Representation of \({\varvec{He}}\) 

Rank: . Suborbit lengths: .

$$\begin{aligned} \mathcal {B}_{\mathbf {4352}} =&\frac{256}{1715}\left( \mathcal {A}_{1}+\frac{1}{8}\mathcal {A}_{2}+\frac{7}{768}\mathcal {A}_{3}-\frac{5}{576}\mathcal {A}_{4}-\frac{7}{128}\mathcal {A}_{6}-\frac{1}{48}\mathcal {A}_{7} \right. \\ {}&\left. \qquad \quad -\frac{1}{18}\mathcal {A}_{8}+\frac{1}{576}\mathcal {A}_{9}+\frac{1}{576}\mathcal {A}_{10}-\frac{1}{192}\mathcal {A}_{11}-\frac{1}{192}\mathcal {A}_{12} \right) \\ \mathcal {B}_{\mathbf {7650}} =&\frac{90}{343}\left( \mathcal {A}_{1}-\frac{1}{20}\mathcal {A}_{2}+\frac{1}{120}\mathcal {A}_{4}-\frac{7}{360}\mathcal {A}_{5}-\frac{1}{90}\mathcal {A}_{7}+\frac{1}{10}\mathcal {A}_{8}+\frac{1}{240}\mathcal {A}_{9} \right. \\ {}&\left. \qquad \quad +\frac{1}{240}\mathcal {A}_{10}-\frac{1}{80}\mathcal {A}_{11}-\frac{1}{80}\mathcal {A}_{12} \right) \\ \mathcal {B}_{\mathbf {11900}} =&\frac{20}{49}\left( \mathcal {A}_{1}-\frac{1}{20}\mathcal {A}_{2}-\frac{1}{720}\mathcal {A}_{4}+\frac{1}{120}\mathcal {A}_{7} -\frac{1}{18}\mathcal {A}_{8}-\frac{1}{180}\mathcal {A}_{9}-\frac{1}{180}\mathcal {A}_{10} \right. \\ {}&\left. \qquad \quad +\frac{1}{60}\mathcal {A}_{11}+\frac{1}{60}\mathcal {A}_{12} \right) \end{aligned}$$

Time C: s. Time Maple: s.

1.3 A.3 Suzuki Group

Main properties:

 

\(\varvec{65520}\)-dimensional Representation of \(\varvec{2.Suz}\) 

Rank: . Suborbit lengths: .

$$\begin{aligned}&\mathbf {\underline{65520}}\cong \mathbf {1}\oplus \mathbf {143}\oplus \mathbf {364_\alpha }\oplus \mathbf {364_\beta }\oplus \overline{\mathbf {364_\beta }}\oplus \mathbf {5940}\oplus \mathbf {12012}\oplus \mathbf {14300}\\&\quad \quad \quad \quad \,\,\,\,\, \oplus \mathbf {16016}\oplus \overline{\mathbf {16016}} \end{aligned}$$
$$\begin{aligned} \mathcal {B}_{\mathbf {143}} =&\frac{11}{5040}\left( \mathcal {A}_{1}+\mathcal {A}_{2}+\frac{2}{11}\mathcal {A}_{3}-\frac{1}{11}\mathcal {A}_{4}+\frac{2}{11}\mathcal {A}_{5}-\frac{1}{11}\mathcal {A}_{6}+\frac{3}{11}\mathcal {A}_{9}+\frac{3}{11}\mathcal {A}_{10} \right) \\ \mathcal {B}_{\mathbf {364_\alpha }} =&\frac{1}{180}\left( \mathcal {A}_{1}+\mathcal {A}_{2}+\frac{1}{16}\mathcal {A}_{3}+\frac{1}{6}\mathcal {A}_{4}+\frac{1}{16}\mathcal {A}_{5}-\frac{1}{24}\mathcal {A}_{6}-\frac{1}{144}\mathcal {A}_{7}-\frac{1}{144}\mathcal {A}_{8} \right. \\ {}&\left. \qquad \quad -\frac{1}{9}\mathcal {A}_{9}-\frac{1}{9}\mathcal {A}_{10} \right) \\ \mathcal {B}_{\mathbf {364_\beta }} =&\frac{1}{180}\left( \mathcal {A}_{1}-\mathcal {A}_{2}-\frac{1}{8}\mathcal {A}_{3}+\frac{1}{8}\mathcal {A}_{5}+\mathrm {\mathbf {i}}\frac{\sqrt{3}}{72}\mathcal {A}_{7}-\mathrm {\mathbf {i}}\frac{\sqrt{3}}{72}\mathcal {A}_{8} \right. \\ {}&\left. \qquad \quad +\mathrm {\mathbf {i}}\frac{\sqrt{3}}{9}\mathcal {A}_{9}-\mathrm {\mathbf {i}}\frac{\sqrt{3}}{9}\mathcal {A}_{10} \right) \\ \mathcal {B}_{\mathbf {5940}} =&\frac{33}{364}\left( \mathcal {A}_{1}+\mathcal {A}_{2}+\frac{1}{352}\mathcal {A}_{3}+\frac{1}{66}\mathcal {A}_{4}+\frac{1}{352}\mathcal {A}_{5}+\frac{1}{66}\mathcal {A}_{6}-\frac{7}{864}\mathcal {A}_{7} \right. \\ {}&\left. \qquad \quad -\frac{7}{864}\mathcal {A}_{8}+\frac{1}{27}\mathcal {A}_{9}+\frac{1}{27}\mathcal {A}_{10} \right) \\ \end{aligned}$$
$$\begin{aligned} \mathcal {B}_{\mathbf {12012}} =&\frac{11}{60}\left( \mathcal {A}_{1}+\mathcal {A}_{2}+\frac{1}{88}\mathcal {A}_{3}-\frac{1}{66}\mathcal {A}_{4}+\frac{1}{88}\mathcal {A}_{5}+\frac{1}{264}\mathcal {A}_{6}-\frac{1}{33}\mathcal {A}_{9}-\frac{1}{33}\mathcal {A}_{10} \right) \\ \mathcal {B}_{\mathbf {14300}} =&\frac{55}{252}\left( \mathcal {A}_{1}+\mathcal {A}_{2}-\frac{5}{352}\mathcal {A}_{3}+\frac{1}{330}\mathcal {A}_{4}-\frac{5}{352}\mathcal {A}_{5}-\frac{1}{132}\mathcal {A}_{6}+\frac{1}{288}\mathcal {A}_{7} \right. \\ {}&\left. \qquad \quad +\frac{1}{288}\mathcal {A}_{8}+\frac{1}{99}\mathcal {A}_{9}+\frac{1}{99}\mathcal {A}_{10} \right) \\ \mathcal {B}_{\mathbf {16016}} =&\frac{11}{45}\left( \mathcal {A}_{1}-\mathcal {A}_{2}+\frac{1}{352}\mathcal {A}_{3}-\frac{1}{352}\mathcal {A}_{5}-\mathrm {\mathbf {i}}\frac{\sqrt{3}}{288}\mathcal {A}_{7}+\mathrm {\mathbf {i}}\frac{\sqrt{3}}{288}\mathcal {A}_{8} \right. \\ {}&\left. \qquad \quad +\mathrm {\mathbf {i}}\frac{\sqrt{3}}{99}\mathcal {A}_{9}-\mathrm {\mathbf {i}}\frac{\sqrt{3}}{99}\mathcal {A}_{10} \right) \end{aligned}$$

Time C: min s. Time Maple: s.

\(\varvec{98280}\)-dimensional Representation of \(\varvec{3.Suz}\) 

Rank: . Suborbit lengths: .

$$\begin{aligned}&\mathbf {\underline{98280}}\cong \mathbf {1}\oplus \mathbf {78}\oplus \overline{\mathbf {78}}\oplus \mathbf {143}\oplus \mathbf {364}\oplus \mathbf {1365}\oplus \overline{\mathbf {1365}}\oplus \mathbf {4290}\oplus \overline{\mathbf {4290}}\\&\quad \quad \quad \,\,\,\;\;\, \oplus \mathbf {5940}\oplus \mathbf {12012}\oplus \mathbf {14300}\oplus \mathbf {27027}\oplus \overline{\mathbf {27027}} \end{aligned}$$
$$\begin{aligned} \mathcal {B}_{\mathbf {5940}} =&\frac{11}{182}\left( \mathcal {A}_{1}-\frac{7}{864}\mathcal {A}_{2}+\frac{1}{66}\mathcal {A}_{3}+\frac{1}{27}\mathcal {A}_{4}+\frac{1}{66}\mathcal {A}_{5}+\frac{1}{352}\mathcal {A}_{6}-\frac{7}{864}\mathcal {A}_{7} \right. \\ {}&\left. \quad \quad -\frac{7}{864}\mathcal {A}_{8}+\frac{1}{352}\mathcal {A}_{9}+\frac{1}{352}\mathcal {A}_{10}+\frac{1}{27}\mathcal {A}_{11}+\frac{1}{27}\mathcal {A}_{12}+\mathcal {A}_{13}+\mathcal {A}_{14} \right) \\ \mathcal {B}_{\mathbf {12012}} =&\frac{11}{90}\left( \mathcal {A}_{1}-\frac{1}{66}\mathcal {A}_{3}-\frac{1}{33}\mathcal {A}_{4}+\frac{1}{264}\mathcal {A}_{5}+\frac{1}{88}\mathcal {A}_{6}+\frac{1}{88}\mathcal {A}_{9} \right. \\ {}&\left. \quad \quad \; +\frac{1}{88}\mathcal {A}_{10}-\frac{1}{33}\mathcal {A}_{11}-\frac{1}{33}\mathcal {A}_{12}+\mathcal {A}_{13}+\mathcal {A}_{14} \right) \\ \mathcal {B}_{\mathbf {14300}} =&\frac{55}{378}\left( \mathcal {A}_{1}+\frac{1}{288}\mathcal {A}_{2}+\frac{1}{330}\mathcal {A}_{3}+\frac{1}{99}\mathcal {A}_{4}-\frac{1}{132}\mathcal {A}_{5}-\frac{5}{352}\mathcal {A}_{6}+\frac{1}{288}\mathcal {A}_{7} \right. \\ {}&\left. \quad \quad \; +\frac{1}{288}\mathcal {A}_{8}-\frac{5}{352}\mathcal {A}_{9}-\frac{5}{352}\mathcal {A}_{10}+\frac{1}{99}\mathcal {A}_{11}+\frac{1}{99}\mathcal {A}_{12}+\mathcal {A}_{13}+\mathcal {A}_{14} \right) \\ \mathcal {B}_{\mathbf {27027}} =&\frac{11}{40}\left( \mathcal {A}_{1}-\frac{1}{432}\mathcal {A}_{2}+\frac{1}{297}\mathcal {A}_{4}-\frac{1}{176}\mathcal {A}_{6}-\frac{\mathsf {r}_{}}{432}\mathcal {A}_{7}-\frac{\mathsf {r}_{}^2}{432}\mathcal {A}_{8} \right. \\ {}&\left. \quad \quad \quad -\frac{\mathsf {r}_{}}{176}\mathcal {A}_{9}-\frac{\mathsf {r}_{}^2}{176}\mathcal {A}_{10}+\frac{\mathsf {r}_{}^2}{297}\mathcal {A}_{11}+\frac{\mathsf {r}_{}}{297}\mathcal {A}_{12}+\mathsf {r}_{}\mathcal {A}_{13}+\mathsf {r}_{}^2\mathcal {A}_{14} \right) \end{aligned}$$

is the basic primitive rd root of unity.

Time C: min s. Time Maple: min s.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kornyak, V.V. (2018). Splitting Permutation Representations of Finite Groups by Polynomial Algebra Methods. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99639-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99638-7

  • Online ISBN: 978-3-319-99639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics