Advertisement

# Mathematical Modelling and Performance Analysis of a Small-Scale Combined Heat and Power System Based on Biomass Waste Downdraft Gasification

• Marta Trninic
• Dusan Todorovic
• Aleksandar Jovovic
• Dragoslava Stojiljkovic
• Øyvind Skreiberg
• Liang Wang
• Nebojsa Manic
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 54)

## Abstract

The paper presents a simple mathematical model for designing, optimizing and simulating small–medium CHP scale plant with use of biomass waste downdraft gasification. A downdraft gasifier has been used as the starting point in the study, due to its low tar content and effective way of using heat in the engine’s exhaust gases to dry and pyrolyze the different solid biomass waste. Hot water from the cooling circuit of the engine and from producer gas cooling is directly used for the district heating network, air or steam preheating. The mathematical model includes modelled components as a downdraft gasifier, an internal combustion engine using the characteristic equation approach method. The mathematical model enables the outputs of the plant to be evaluated and calculated for different types of biomass and operating conditions. The results demonstrate that it is a useful tool for assessing the performance of CHP plants using several types of biomass waste and enables comparisons to be made between operating conditions for real applications.

## Keywords

Biomass Downdraft gasification CHP

## References

1. 1.
Gao, N., Li, A.: Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag. 49(12), 3483–3490 (2008)
2. 2.
Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Modified thermodynamic equilibrium model for biomass gasification: a study of the influence of operating conditions. Energy Fuels 26(2), 1385–1394 (2012)
3. 3.
Basu, P.: Biomass Gasification and Pyrolysis: Practical Design and Theory, p. 365. Elsevier Inc., Oxford (2010)Google Scholar
4. 4.
Francois, J., et al.: Detailed process modeling of a wood gasification combined heat and power plant. Biomass Bioenerg. 51, 68–82 (2013)
5. 5.
Trninić, M.: Modeling and Optimisation of corn cob Pyrolysis, in Faculty of Mechanical Engineering. Department for Process Engineering and Enviromental Protection, Belgrade University Belgrade, Belgrade (2015)Google Scholar
6. 6.
Sterner, M.: Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Faculty of Electrical Engineering and Computer Science, University of Kassel, Kassel (2009)Google Scholar
7. 7.
Loo, S.V., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing. Earthscan, London (2008)Google Scholar
8. 8.
Chinese, D., Meneghetti, A.: Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy. Appl. Energy 82(3), 228–254 (2005)
9. 9.
Morris, M., et al.: Status of large-scale biomassgasification and prospects (Chap. 5). In: Knoef, H.A.M. (ed.) Handbook Biomass Gasification, Enschede, Netherlands (2005)Google Scholar
10. 10.
Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A.: Trends of syngas as a fuel in internal combustion engines. Adv. Mech. Eng. 6, 401587 (2014)
11. 11.
Ahmed, T.Y., et al.: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew. Sustain. Energy Rev. 16(4), 2304–2315 (2012)
12. 12.
Gómez-Barea, A., Leckner, B.: Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 36(4), 444–509 (2010)
13. 13.
Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification: an overview. Renew. Sustain. Energy Rev. 13(3), 594–604 (2009)
14. 14.
Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14(9), 2841–2851 (2010)
15. 15.
Ruggiero, M., Manfrida, G.: An equilibrium model for biomass gasification processes. Renew. Energy 16(1–4), 1106–1109 (1999)
16. 16.
Mikulandrić, R., et al.: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manag. 87, 1210–1223 (2014)
17. 17.
Patuzzi, F., et al.: Small-scale biomass gasification CHP systems: comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy 112, 285–293 (2016)
18. 18.
Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Appl. Energy 114, 845–856 (2014)
19. 19.
Zabaniotou, A., et al.: Bioenergy technology: gasification with internal combustion engine application. Energy Procedia 42, 745–753 (2013)
20. 20.
F-Chart Software: EES-Engineering Equation Solver 2016, Professional Version V 10.066-3DGoogle Scholar
21. 21.
Wang, L., et al.: Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 1: Round-Robin Results for Three Different Corncob Materials. Energy Fuels 25(7), 3251–3265 (2011)
22. 22.
Trninić, M., et al.: Kinetics of Corncob Pyrolysis. Energy Fuels 26(4), 2005–2013 (2012)
23. 23.
Trninić, M., Jovović, A., Stojiljković, D.: A steady state model of agricultural waste pyrolysis: a mini review. Waste Manag. Res. 34(9), 851–865 (2016)
24. 24.
Senelwa, K.A.: The air gasification of woody biomass from short rotation forests short rotation forests. In: Agricultural Engineering, Massey University, New Zealand (1997)Google Scholar
25. 25.
Da Silva, J.N.: Tar Formation in Corncob Gasification, Purdue University, West Lafayette, Indiana, USA (1984)Google Scholar
26. 26.
Elliott, M.A., Nebel, G.J., Rounds, F.G.: The composition of exhaust gases from diesel, gasoline and propane powered motor coaches. J. Air Pollut. Control Assoc. 5(2), 103–108 (1955)
27. 27.
GE Jenbacher: Jenbacher gas engines - Jenbacher Type JMS 208 GS-B.L.Google Scholar
28. 28.
Doherty, W., Reynolds, A., Kennedy, D.: The effect of air preheating in a biomass CFB gasifier using ASPEN Plussimulation. Biomass Bioenergy 33(9), 1158–1167 (2009)
29. 29.
Sugiyama, S., et al.: Gasification performance of coals using high temperature air. Energy 30(2), 399–413 (2005)

## Copyright information

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Marta Trninic
• 1
Email author
• Dusan Todorovic
• 1
• Aleksandar Jovovic
• 1
• Dragoslava Stojiljkovic
• 1
• Øyvind Skreiberg
• 2
• Liang Wang
• 2
• Nebojsa Manic
• 1
1. 1.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
2. 2.SINTEF Energy ResearchTrondheimNorway