Advertisement

Mathematical Modelling and Performance Analysis of a Small-Scale Combined Heat and Power System Based on Biomass Waste Downdraft Gasification

  • Marta TrninicEmail author
  • Dusan Todorovic
  • Aleksandar Jovovic
  • Dragoslava Stojiljkovic
  • Øyvind Skreiberg
  • Liang Wang
  • Nebojsa Manic
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 54)

Abstract

The paper presents a simple mathematical model for designing, optimizing and simulating small–medium CHP scale plant with use of biomass waste downdraft gasification. A downdraft gasifier has been used as the starting point in the study, due to its low tar content and effective way of using heat in the engine’s exhaust gases to dry and pyrolyze the different solid biomass waste. Hot water from the cooling circuit of the engine and from producer gas cooling is directly used for the district heating network, air or steam preheating. The mathematical model includes modelled components as a downdraft gasifier, an internal combustion engine using the characteristic equation approach method. The mathematical model enables the outputs of the plant to be evaluated and calculated for different types of biomass and operating conditions. The results demonstrate that it is a useful tool for assessing the performance of CHP plants using several types of biomass waste and enables comparisons to be made between operating conditions for real applications.

Keywords

Biomass Downdraft gasification CHP 

References

  1. 1.
    Gao, N., Li, A.: Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag. 49(12), 3483–3490 (2008)CrossRefGoogle Scholar
  2. 2.
    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Modified thermodynamic equilibrium model for biomass gasification: a study of the influence of operating conditions. Energy Fuels 26(2), 1385–1394 (2012)CrossRefGoogle Scholar
  3. 3.
    Basu, P.: Biomass Gasification and Pyrolysis: Practical Design and Theory, p. 365. Elsevier Inc., Oxford (2010)Google Scholar
  4. 4.
    Francois, J., et al.: Detailed process modeling of a wood gasification combined heat and power plant. Biomass Bioenerg. 51, 68–82 (2013)CrossRefGoogle Scholar
  5. 5.
    Trninić, M.: Modeling and Optimisation of corn cob Pyrolysis, in Faculty of Mechanical Engineering. Department for Process Engineering and Enviromental Protection, Belgrade University Belgrade, Belgrade (2015)Google Scholar
  6. 6.
    Sterner, M.: Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Faculty of Electrical Engineering and Computer Science, University of Kassel, Kassel (2009)Google Scholar
  7. 7.
    Loo, S.V., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing. Earthscan, London (2008)Google Scholar
  8. 8.
    Chinese, D., Meneghetti, A.: Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy. Appl. Energy 82(3), 228–254 (2005)CrossRefGoogle Scholar
  9. 9.
    Morris, M., et al.: Status of large-scale biomassgasification and prospects (Chap. 5). In: Knoef, H.A.M. (ed.) Handbook Biomass Gasification, Enschede, Netherlands (2005)Google Scholar
  10. 10.
    Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A.: Trends of syngas as a fuel in internal combustion engines. Adv. Mech. Eng. 6, 401587 (2014)CrossRefGoogle Scholar
  11. 11.
    Ahmed, T.Y., et al.: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew. Sustain. Energy Rev. 16(4), 2304–2315 (2012)CrossRefGoogle Scholar
  12. 12.
    Gómez-Barea, A., Leckner, B.: Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 36(4), 444–509 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification: an overview. Renew. Sustain. Energy Rev. 13(3), 594–604 (2009)CrossRefGoogle Scholar
  14. 14.
    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14(9), 2841–2851 (2010)CrossRefGoogle Scholar
  15. 15.
    Ruggiero, M., Manfrida, G.: An equilibrium model for biomass gasification processes. Renew. Energy 16(1–4), 1106–1109 (1999)CrossRefGoogle Scholar
  16. 16.
    Mikulandrić, R., et al.: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manag. 87, 1210–1223 (2014)CrossRefGoogle Scholar
  17. 17.
    Patuzzi, F., et al.: Small-scale biomass gasification CHP systems: comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy 112, 285–293 (2016)CrossRefGoogle Scholar
  18. 18.
    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Appl. Energy 114, 845–856 (2014)CrossRefGoogle Scholar
  19. 19.
    Zabaniotou, A., et al.: Bioenergy technology: gasification with internal combustion engine application. Energy Procedia 42, 745–753 (2013)CrossRefGoogle Scholar
  20. 20.
    F-Chart Software: EES-Engineering Equation Solver 2016, Professional Version V 10.066-3DGoogle Scholar
  21. 21.
    Wang, L., et al.: Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 1: Round-Robin Results for Three Different Corncob Materials. Energy Fuels 25(7), 3251–3265 (2011)CrossRefGoogle Scholar
  22. 22.
    Trninić, M., et al.: Kinetics of Corncob Pyrolysis. Energy Fuels 26(4), 2005–2013 (2012)CrossRefGoogle Scholar
  23. 23.
    Trninić, M., Jovović, A., Stojiljković, D.: A steady state model of agricultural waste pyrolysis: a mini review. Waste Manag. Res. 34(9), 851–865 (2016)CrossRefGoogle Scholar
  24. 24.
    Senelwa, K.A.: The air gasification of woody biomass from short rotation forests short rotation forests. In: Agricultural Engineering, Massey University, New Zealand (1997)Google Scholar
  25. 25.
    Da Silva, J.N.: Tar Formation in Corncob Gasification, Purdue University, West Lafayette, Indiana, USA (1984)Google Scholar
  26. 26.
    Elliott, M.A., Nebel, G.J., Rounds, F.G.: The composition of exhaust gases from diesel, gasoline and propane powered motor coaches. J. Air Pollut. Control Assoc. 5(2), 103–108 (1955)CrossRefGoogle Scholar
  27. 27.
    GE Jenbacher: Jenbacher gas engines - Jenbacher Type JMS 208 GS-B.L.Google Scholar
  28. 28.
    Doherty, W., Reynolds, A., Kennedy, D.: The effect of air preheating in a biomass CFB gasifier using ASPEN Plussimulation. Biomass Bioenergy 33(9), 1158–1167 (2009)CrossRefGoogle Scholar
  29. 29.
    Sugiyama, S., et al.: Gasification performance of coals using high temperature air. Energy 30(2), 399–413 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Trninic
    • 1
    Email author
  • Dusan Todorovic
    • 1
  • Aleksandar Jovovic
    • 1
  • Dragoslava Stojiljkovic
    • 1
  • Øyvind Skreiberg
    • 2
  • Liang Wang
    • 2
  • Nebojsa Manic
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.SINTEF Energy ResearchTrondheimNorway

Personalised recommendations