Advertisement

Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement

  • Aleksandra MitrovicEmail author
  • Nenad Mitrovic
  • Aleksandar Maslarevic
  • Vuk Adzic
  • Dejana Popovic
  • Milos Milosevic
  • Dusan Antonovic
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 54)

Abstract

One of the main objectives in research and development of resin based cements (RBCs) is to enhance their clinical longevity and ease of use. In spite of the undeniable technological advances introduced in the last few decades, the polymerization shrinkage i.e. strain that accompanies the chain-growth polymerization of dimethacrylate monomers remains one of the major concerns for the clinical performance of composite restorations. Also, RBCs can produce a considerable amount of heat, due to the light energy from the curing lights and exothermic reaction of polymerization.

The purpose of this study was to determine the temperature changes during the photo-polymerization using thermocouples and to measure strain field of the self-etching, self-adhesive RBC, Maxcem Elite (Kerr, Orange, CA, USA) (ø5 × 1 mm - Group I and ø5 × 2 mm - Group II) using experimental technique, 3D Digital Image Correlation (DIC) method. Digital images were recorded immediately after photo-polymerization of the samples with a LED-curing unit for 20 s, according to manufacturer’s recommendation. Vickers microhardness was determined after photo-polymerization and after 24 h. Temperature curves for both groups indicated similar patterns but the peak temperature of Group II was significantly higher compared to peak temperature of Group I. DIC showed that peripheral zone of the samples had the highest strain values in both groups. Group I indicated significantly higher values of hardness. All the results were material-dependent and probably correlated to the composition of each material, which is not fully disclosed by the manufacturers.

Keywords

Resin based cement Temperature change Thermocouples Strain 3D Digital Image Correlation Vickers microhardness 

Notes

Acknowledgement

The authors are grateful to Neodent (Belgrade, Serbia) for providing the material used in this study. This research was supported by Ministry of Education, Science and Technological Development of Republic of Serbia under Project TR35031.

References

  1. 1.
    Kitzmüller, K., Graf, A., Watts, D., Schedle, A.: Setting kinetics and shrinkage of self-adhesive resin cements depend on cure-mode and temperature. Dent. Mater. 27, 544–551 (2011).  https://doi.org/10.1016/j.dental.2011.02.004CrossRefGoogle Scholar
  2. 2.
    Vrochari, A.D., Eliades, G., Hellwig, E., Wrbas, K.T.: Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 25, 1104–1108 (2009).  https://doi.org/10.1016/j.dental.2009.02.015CrossRefGoogle Scholar
  3. 3.
    Van Ende, A., Van de Casteele, E., Depypere, M., De Munck, J., Li, X., Maesc, F., Wevers, M., Van Meerbeek, B.: 3D volumetric displacement and strain analysis of composite polymerization. Dent. Mater. 31, 453–461 (2015).  https://doi.org/10.1016/j.dental.2015.01.018CrossRefGoogle Scholar
  4. 4.
    Zorzina, J., Maiera, E., Harrea, S., Feyb, T., Belli, R., Lohbauer, U., Petschelt, A., Taschner, A.: Bulk-fill resin composites: polymerization properties and extended light curing. Dent. Mater. 31, 293–301 (2015).  https://doi.org/10.1016/j.dental.2014.12.010CrossRefGoogle Scholar
  5. 5.
    Li, J., Fok, A.S., Satterthwaite, J., Watts, D.C.: Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dent. Mater. 25, 582–588 (2009).  https://doi.org/10.1016/j.dental.2008.11.001CrossRefGoogle Scholar
  6. 6.
    Miletic, V., Manojlovic, D., Milosevic, M., Mitrovic, N., Stankovic, T.S., Maneski, T.: Analysis of local shrinkage patterns of self-adhering and flowable composites using 3D digital image correlation. Quintessence Int. J. Pract. Dentist. Engl. Ed. 42, 797–804 (2011)Google Scholar
  7. 7.
    Fang Chen, T.Y., Sheng Huang, P., Fen, C.S.: Modeling dental composite shrinkage by digital image correlation and finite element methods. Opt. Lasers Eng. 61, 23–30 (2014).  https://doi.org/10.1016/j.optlaseng.2014.04.006CrossRefGoogle Scholar
  8. 8.
    Cadenaro, M., Navarra, C.O., Antoniolli, F., Mazzoni, A., Di Lenarda, R., Rueggeberg, F.A., Breschi, L.: The effect of curing mode on extent of polymerization and microhardness of dual-cured, self-adhesive resin cements. Am. J. Dent. 23, 14–18 (2010)Google Scholar
  9. 9.
    Giráldez, I., Ceballos, L., Garrido, M.A., Rodríguez, J.: Early hardness of self-adhesive resin cements cured under indirect resin composite restorations. Jo. Esthet. Restor. Dent. 23, 116–124 (2011).  https://doi.org/10.1111/j.1708-8240.2011.00408.xCrossRefGoogle Scholar
  10. 10.
    Kim, R.J., Son, S.A., Hwang, J.Y., Lee, I.B., Seo, D.G.: Comparison of photopolymerization temperature increases in internal and external positions of composite and tooth cavities in real time: incremental fillings of microhybrid composite vs. bulk filling of bulk fill composite. J. Dent. 43, 1093–1098 (2015).  https://doi.org/10.1016/j.jdent.2015.07.003CrossRefGoogle Scholar
  11. 11.
    da Silva, E.M., Penelas, A.G., Simão, M.S., Filho, J.D., Posku, L.T., Guimarães, J.G.: Influence of the degree of dentine mineralization on pulp chamber temperature increase during resin-based composite (RBC) light-activation. J. Dent. 38, 336–342 (2010).  https://doi.org/10.1016/j.jdent.2009.12.007CrossRefGoogle Scholar
  12. 12.
    Michalakis, K., Pissiotis, A., Hirayama, H., Kang, K., Kafantaris, N.: Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J. Prosthet. Dent. 96, 418–423 (2006).  https://doi.org/10.1016/j.prosdent.2006.10.005CrossRefGoogle Scholar
  13. 13.
    Ramoglu, S.I., Karamehmetoglu, H., Sari, T., Usumez, S.: Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Angle Orthod. 85, 381–385 (2015).  https://doi.org/10.2319/030814-164.1CrossRefGoogle Scholar
  14. 14.
    Hannig, M., Bott, B.: In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent. Mater. 15, 275–281 (1999).  https://doi.org/10.1016/S0109-5641(99)00047-0CrossRefGoogle Scholar
  15. 15.
    McCabe, J.F.: Cure performance of light-activated composites by differential thermal analysis (DTA). Dent. Mater. 1, 231–234 (1985).  https://doi.org/10.1016/S0109-5641(85)80048-8CrossRefGoogle Scholar
  16. 16.
    Vaidyanathan, J., Vaidyanathan, T.K., Wang, Y., Viswanadhan, T.: Thermoanalytical characterization of visible light cure dental composites. J. Oral Rehabil. 19, 49–64 (1992).  https://doi.org/10.1111/j.1365-2842.1992.tb01590.xCrossRefGoogle Scholar
  17. 17.
    Vaidyanathan, J., Vaidyanathan, T.K.: Computer-controlled differential scanning calorimetry of dental composites. IEEE Trans. Biomed. Eng. 38, 319–325 (1991).  https://doi.org/10.1109/10.133224CrossRefGoogle Scholar
  18. 18.
    Al-Qudah, A.A., Mitchell, C.A., Biagioni, P.A., Hussey, D.L.: Thermographic investigation of contemporary resin-containing dental materials. J. Dent. 33, 593–602 (2005).  https://doi.org/10.1016/j.jdent.2005.01.010CrossRefGoogle Scholar
  19. 19.
    Al-Qudah, A.A., Mitchell, C.A., Biagioni, P.A., Hussey, D.L.: Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J. Dent. 35, 238–245 (2007).  https://doi.org/10.1016/j.jdent.2006.07.012CrossRefGoogle Scholar
  20. 20.
    Stewardson, D.A., Shortall, A.C., Harrington, E., Lumley, P.J.: Thermal changes and cure depths associated with a high intensity light activation unit. J. Dent. 32, 643–651 (2004).  https://doi.org/10.1016/j.jdent.2004.06.007CrossRefGoogle Scholar
  21. 21.
    Shortall, A., El-Mahy, W., Stewardson, D., Addison, O., Palin, W.: Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure. J. Dent. 41, 455–463 (2013).  https://doi.org/10.1016/j.jdent.2013.02.002CrossRefGoogle Scholar
  22. 22.
    Hofmann, N., Hugo, B., Klaiber, B.: Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur. J. Oral Sci. 11, 471–479 (2002).  https://doi.org/10.1034/j.1600-0722.2002.21359.xCrossRefGoogle Scholar
  23. 23.
    Leprince, J., Devaux, J., Mullier, T., Vreven, J., Leloup, G.: Pulpal-temperature rise and polymerization efficiency of LED curing lights. Oper. Dent. 35, 220–230 (2010).  https://doi.org/10.2341/09-203-lCrossRefGoogle Scholar
  24. 24.
    Alnazzawi, A., Watts, D.C.: Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites. Dent. Mater. 28, 1240–1249 (2012).  https://doi.org/10.1016/j.dental.2012.09.004CrossRefGoogle Scholar
  25. 25.
    Mamourian, M., Esfahani, A.J., Ayani, B.M.: Experimental and scale up study of the flame spread over the PMMA sheets. Therm. Sci. 13, 79–88 (2009).  https://doi.org/10.2298/TSCI0901079MCrossRefGoogle Scholar
  26. 26.
    Zhao, Z., Huang, H.M., Wang, Q., Ji, S.: Effects of pressure and temperature on thermal contact resistance between different materials. Therm. Sci. 19, 1369–1372 (2015).  https://doi.org/10.2298/tsci1504369zCrossRefGoogle Scholar
  27. 27.
    Asmussen, E., Peutzfeldt, A.: Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur. J. Oral Sci. 113, 96–98 (2005).  https://doi.org/10.1111/j.1600-0722.2004.00181.xCrossRefGoogle Scholar
  28. 28.
    Hofmann, N., Markert, T., Hugo, B., Klaiber, B.: Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage. Am. J. Dent. 16, 421–430 (2003)Google Scholar
  29. 29.
    Daronch, M., Rueggeberg, F.A., Hall, G., De Goes, M.F.: Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 23, 1283–1288 (2007).  https://doi.org/10.1016/j.dental.2006.11.024CrossRefGoogle Scholar
  30. 30.
    Knežević, A., Tarle, Z., Meniga, A., Sutalo, J., Pichler, G.: Influence of light intensity from different curing units upon composite temperature rise. J. Oral Rehabil. 32, 362–367 (2005).  https://doi.org/10.1111/j.1365-2842.2004.01418.xCrossRefGoogle Scholar
  31. 31.
    Armellin, E., Bovesecchi, G., Coppa, P., Pasquantonio, G., Cerroni, L.: LED curing lights and temperature changes in different tooth sites. Biomed. Res. Int. 2016, 1–10 (2016).  https://doi.org/10.1155/2016/1894672CrossRefGoogle Scholar
  32. 32.
    Vallittu, P.K.: Peak temperatures of some prosthetic acrylates on polymerization. J. Oral Rehabil. 23, 776–781 (1996).  https://doi.org/10.1046/j.1365-2842.1996.00430.xCrossRefGoogle Scholar
  33. 33.
    Kim, S.H., Watts, D.C.: Exotherm behavior of the polymer-based provisional crown and fixed partial denture materials. Dent. Mater. 20, 383–387 (2004).  https://doi.org/10.1016/j.dental.2003.11.001CrossRefGoogle Scholar
  34. 34.
    Braga, R.R., Ballester, R.Y., Ferracane, J.L.: Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent. Mater. 21, 962–970 (2005).  https://doi.org/10.1016/j.dental.2005.04.018CrossRefGoogle Scholar
  35. 35.
    Labella, R., Lambrechts, P., Van Meerbeek, B., Vanherle, G.: Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 15, 128–137 (1999).  https://doi.org/10.1016/S0109-5641(99)00022-6CrossRefGoogle Scholar
  36. 36.
    Miletic, V., Peric, D., Milosevic, M., Manojlovic, D., Mitrovic, N.: Local deformation fields and marginal integrity of sculptable bulk-fill, low-shrinkage and conventional composites. Dent. Mater. 32, 1441–1451 (2016).  https://doi.org/10.1016/j.dental.2016.09.011CrossRefGoogle Scholar
  37. 37.
    Manojlovic, D., Dramićanin, M.D., Milosevic, M., Zeković, I., Cvijović-Alagić, I., Mitrovic, N., Miletic, V.: Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. Mater. Sci. Eng. C 58, 487–494 (2016).  https://doi.org/10.1016/j.msec.2015.08.054CrossRefGoogle Scholar
  38. 38.
    Milosevic, M., Miletic, V., Mitrovic, N., Manojlovic, D., Savic Stankovic, T., Maneski, T.: Measurement of local deformation fields in dental composites using 3D optical system. Chem. Listy 105, s751–s753 (2011)Google Scholar
  39. 39.
    Mitrović, A., Tanasić, V.I., Mitrović, N., Milošević, M., Tihaček-Šojić, L., Antonović, D.: Strain determination of self-adhesive resin cement using 3D Digital Image Correlation method. Arh. Celok. Lek, Srp (2018).  https://doi.org/10.2298/sarh170530176mCrossRefGoogle Scholar
  40. 40.
    Kaisarly, D., Gezawi, M.E.: Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology 104, 257–270 (2016).  https://doi.org/10.1007/s10266-016-0264-3CrossRefGoogle Scholar
  41. 41.
    Arrais, C.A., Rueggeberg, F.A., Waller, J.L., de Goes, M.F., Giannini, M.: Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. J. Dent. 36, 418–426 (2008).  https://doi.org/10.1016/j.jdent.2008.02.014CrossRefGoogle Scholar
  42. 42.
    Kleverlaan, C.J., Feilzer, A.J.: Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 21, 1150–1157 (2005).  https://doi.org/10.1016/j.dental.2005.02.004CrossRefGoogle Scholar
  43. 43.
    Spinell, T., Schedle, A., Watts, D.C.: Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dent. Mater. 25, 1058–1066 (2009).  https://doi.org/10.1016/j.dental.2009.04.008CrossRefGoogle Scholar
  44. 44.
    Martinsen, M., El-Hajjar, R.F., Berzins, D.W.: 3D full field strain analysis of polymerization shrinkage in a dental composite. Dent. Mater. 29, e161–e167 (2013).  https://doi.org/10.1016/j.dental.2013.04.019CrossRefGoogle Scholar
  45. 45.
    Frassetto, A., Navarra, C.O., Marchesi, G., Turco, G., Di Lenarda, R., Breschi, L., Ferracane, J.L., Cadenaro, M.: Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dent. Mater. 28, 1032–1039 (2012).  https://doi.org/10.1016/j.dental.2012.06.003CrossRefGoogle Scholar
  46. 46.
    Truffier-Boutry, D., Demoustier-Champagne, S., Devaux, J., Biebuyck, J.J., Mestdagh, M., Larbanois, P., Leloup, G.: A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent. Mater. 22, 405–412 (2006).  https://doi.org/10.1016/j.dental.2005.04.030CrossRefGoogle Scholar
  47. 47.
    Li, J., Li, H., Fok, A.S.L., Watts, D.C.: Multiple correlations of material parameters of light-cured dental composites. Dent. Mater. 25, 829–836 (2009).  https://doi.org/10.1016/j.dental.2009.03.011CrossRefGoogle Scholar
  48. 48.
    Meira, J.B.C., Braga, R.R., Ballester, R.Y., Tanaka, C.B., Versluis, A.: Understanding contradictory data in contraction stress tests. J. Dent. Res. 90, 365–370 (2011).  https://doi.org/10.1177/0022034510388039CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksandra Mitrovic
    • 1
    Email author
  • Nenad Mitrovic
    • 2
  • Aleksandar Maslarevic
    • 3
  • Vuk Adzic
    • 2
  • Dejana Popovic
    • 4
  • Milos Milosevic
    • 3
  • Dusan Antonovic
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Innovation Center of Faculty of Mechanical EngineeringBelgradeSerbia
  4. 4.Vinca Institute, University of BelgradeBelgradeSerbia

Personalised recommendations