Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 801))

Abstract

Industry 4.0 has revolutionized the recent years because the requirements in all domains of manufacturing, production or sales are dynamics and uncertainty and with them the challenges such as emerging technologies, great volumes of data and to make decisions in real time. This paper describes the advantage of a self-organized multiagent system to addresses the problem of data and how process them in Industry 4.0 environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, E., Grislin-Le Strugeon, E., Mandiau, R.: MAS architecture and knowledge model for vehicles data communication. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 1(1) (2012)

    Google Scholar 

  2. Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010). https://doi.org/10.1016/j.ins.2009.12.032

    Article  Google Scholar 

  3. Buciarelli, E., Silvestri, M., González, S.R.: Decision economics, in commemoration of the birth centennial of Herbert A. Simon 1916–2016 (Nobel Prize in Economics 1978). In: Distributed Computing and Artificial Intelligence, 13th International Conference. Advances in Intelligent Systems and Computing, vol. 475. Springer (2016)

    Google Scholar 

  4. Chamoso, P., Rivas, A., Martín-Limorti, J.J., Rodríguez, S.: A hash based image matching algorithm for social networks. In: Advances in Intelligent Systems and Computing, vol. 619, pp. 183–190 (2018)

    Google Scholar 

  5. Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014)

    Article  Google Scholar 

  6. Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 budget with a CoHeL-IBR system. In: Proceedings of Advances in Case-Based Reasoning, vol. 3155, pp. 533–546 (2004)

    Google Scholar 

  7. Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002). https://doi.org/10.1109/tsmcc.2002.806072

    Article  Google Scholar 

  8. Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999). https://doi.org/10.1016/S0954-1810(99)00007-2

    Article  Google Scholar 

  9. Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004)

    Google Scholar 

  10. Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood Hebbian learning based retrieval method for CBR systems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2003). https://doi.org/10.1007/3-540-45006-8_11

  11. Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004)

    Google Scholar 

  12. Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No. 98TH8367), pp. 259–263 (1998). https://doi.org/10.1109/CIFER.1998.690316

  13. Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012)

    Article  MathSciNet  Google Scholar 

  14. De La Prieta, F., Navarro, M., García, J.A., González, R., Rodríguez, S.: Multi-agent system for controlling a cloud computing environment. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol. 8154 (2013)

    Google Scholar 

  15. Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl.-Based Syst. 16(5–6 SPEC.), 321–328 (2003). https://doi.org/10.1016/S0950-7051(03)00034-0

    Article  Google Scholar 

  16. Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004). https://doi.org/10.1023/B:APIN.0000043558.52701.b1

    Article  Google Scholar 

  17. Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a Fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007)

    Article  Google Scholar 

  18. Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3), 165–178 (2002). https://doi.org/10.1016/S1474-0346(02)00008-3

    Article  Google Scholar 

  19. Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001). https://doi.org/10.1002/int.1024

    Article  MATH  Google Scholar 

  20. García Coria, J.A., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014). https://doi.org/10.1016/j.eswa.2013.08.003

    Article  Google Scholar 

  21. García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: Middleware infrastructure to simulate intelligent agents. In: Advances in Intelligent and Soft Computing, vol. 91 (2011). https://doi.org/10.1007/978-3-642-19934-9_14

    Google Scholar 

  22. Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3) (2002)

    Google Scholar 

  23. Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009). https://doi.org/10.1186/1471-2105-10-187

    Article  Google Scholar 

  24. González Briones, A., Chamoso, P., Barriuso A.: Review of the main security problems with multi-agent systems used in e-commerce applications. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 5 (2016)

    Article  Google Scholar 

  25. Isaza, G., Mejía, M., Castillo, L.F., Morales, A., Duque, N.: Network management using multi-agents system. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 1(3) (2012)

    Google Scholar 

  26. Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl.-Based Syst. 137, 54–64 (2017)

    Article  Google Scholar 

  27. Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016). https://doi.org/10.1016/j.sigpro.2015.07.013

    Article  Google Scholar 

  29. Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)

    Google Scholar 

  30. Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)

    Google Scholar 

  31. Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electr. Eng. 18(12), 1913–1939 (2017)

    Article  Google Scholar 

  32. Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). https://doi.org/10.1016/j.amc.2015.08.059

    Article  Google Scholar 

  33. Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009). https://doi.org/10.1016/j.eswa.2008.10.003

    Article  Google Scholar 

  34. Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol. 4065, pp. 106–120 (2006)

    Chapter  Google Scholar 

  35. Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Corchado, J.M.: Tracking concept drift at feature selection stage in SpamHunting: an anti-spam instance-based reasoning system. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol. 4106, pp. 504–518. Morente-Molinera, J.A. (2006)

    Google Scholar 

  36. Omatu, S., Wada, T., Chamoso, P.: Odor classification using agent technology. DCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(4) (2013)

    Google Scholar 

  37. Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017). https://doi.org/10.1007/978-3-319-60819-8_3

    Google Scholar 

  38. Peñaranda, C., Agüero, J., Carrascosa, C., Rebollo, M., Julián, V.: An agent-based approach for a smart transport system. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 5(2) (2016)

    Article  Google Scholar 

  39. Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, art. no. 8071410 (2017)

    Google Scholar 

  40. Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. (2015). https://doi.org/10.1155/2015/168682

    Article  Google Scholar 

  41. Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol. 6077 (2010). https://doi.org/10.1007/978-3-642-13803-4_12

    Google Scholar 

  42. Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: Proceedings of INES 2010 - 14th International Conference on Intelligent Engineering Systems (2010). https://doi.org/10.1109/INES.2010.5483855

  43. Rodríguez, S., Tapia, D.I., Sanz, E., Zato, C., De La Prieta, F., Gil, O.: Cloud computing integrated into service-oriented multi-agent architecture. In: IFIP Advances in Information and Communication Technology. AICT, vol. 322 (2010). https://doi.org/10.1007/978-3-642-14341-0_29

    Chapter  Google Scholar 

  44. Román Gallego, J.A.,, Rodríguez González, S.: Improvement in the distribution of services in multi-agent systems with SCODA. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3) (2015)

    Google Scholar 

  45. Román, J.A., Rodríguez, S., de da Prieta, F.: Improving the distribution of services in MAS. Commun. Comput. Inf. Sci. 616 (2016). https://doi.org/10.1007/978-3-319-39387-2_4

    Google Scholar 

  46. Santos, G., Pinto, T., Vale, Z., Praça, I., Morais, H.: Enabling communications in heterogeneous multi-agent systems: electricity markets ontology. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 5(2) (2016)

    Article  Google Scholar 

  47. Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 258–261 (2017)

    Google Scholar 

  48. Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009). https://doi.org/10.4018/jaci.2009010102

    Article  Google Scholar 

  49. Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for Ambient Intelligence systems. Inf. Sci. 222, 47–65 (2013). https://doi.org/10.1016/j.ins.2011.05.002

    Article  Google Scholar 

  50. Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12), art. no. 2707 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

I. Sittón Candanedo has been supported by IFARHU – SENACYT scholarship program (Government of Panama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Sittón Candanedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candanedo, I.S. (2019). A Self-organized Multiagent System for Industry 4.0. In: Rodríguez, S., et al. Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference. DCAI 2018. Advances in Intelligent Systems and Computing, vol 801. Springer, Cham. https://doi.org/10.1007/978-3-319-99608-0_55

Download citation

Publish with us

Policies and ethics