Skip to main content

Solid Lipid Nanoparticles: A Modern Approach for the Treatment of Neurodegenerative Diseases

  • Chapter
  • First Online:
Book cover Nanotechnology: Applications in Energy, Drug and Food

Abstract

Targeting drugs to the Central nervous system (CNS) for any CNS related disorders has been a herculean task mainly due to the inability of drugs to cross the blood-brain barrier and blood-cerebrospinal fluid barrier. Nanotechnology has been widely adopted to overcome this shortcoming. Solid lipid nanoparticles have been suggested as successful among the different Nano Drug Delivery systems. The increased chances of traversing the blood brain barrier by the lipid components of solid lipid nanoparticles is notable in addition to the other benefits offered by nanoparticles. The current chapter discusses the application of solid lipid nanoparticles in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal P, Hall JB, Mcleland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar S, Tian F, Stoeger T et al (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt R, Singh D, Prakash A et al (2015) Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 22:931–939

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Buchwald P (1999) Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev 36:229–254

    Article  CAS  PubMed  Google Scholar 

  • Bondi ML, Craparo EF, Giammona G et al (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond) 5:25–32

    Article  CAS  Google Scholar 

  • Burla C, Rego G, Nunes R (2014) Alzheimer, dementia and the living will: a proposal. Med Health Care Philos 17:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Cacciatore I, Ciulla M, Fornasari E et al (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 64:640–665

    Article  CAS  PubMed  Google Scholar 

  • Clark DE (2003) In silico prediction of blood-brain barrier permeation. Drug Discov Today 8:927–933

    Article  CAS  PubMed  Google Scholar 

  • D’Souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release 203:126–139

    Article  CAS  PubMed  Google Scholar 

  • D’Souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275

    Article  CAS  PubMed  Google Scholar 

  • Dang H, Meng MHW, Zhao H et al (2014) Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J Nanopart Res 16:2347

    Article  CAS  Google Scholar 

  • De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  • Derossi D, Calvet S, Trembleau A et al (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63:342–351

    Article  CAS  PubMed  Google Scholar 

  • Dwibhashyam V, Nagappa AN (2008) Strategies for enhanced drug delivery to the central nervous system. Indian J Pharm Sci 70:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito E, Fantin M, Marti M et al (2008) Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 25:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  CAS  PubMed  Google Scholar 

  • Gobbi M, Re F, Canovi M et al (2010) Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials 31:6519–6529

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith M, Abramovitz L, Peer D (2014) Precision nanomedicine in neurodegenerative diseases. ACS Nano 8:1958–1965

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Koul V, Singh Y et al (2014) Targeted drug delivery to central nervous system (CNS) for the treatment of neurodegenerative disorders: trends and advances. Cent Nerv Syst Agents Med Chem 14:43–59

    Article  CAS  PubMed  Google Scholar 

  • Gupta Y, Jain A, Jain SK (2007) Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 59:935–940

    Article  CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci 93:14164–14169

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21:677–692

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Tang J, Li M et al (2016) Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv 23:459–470

    Article  CAS  PubMed  Google Scholar 

  • Jogani V, Jinturkar K, Vyas T et al (2008) Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul 2:25–40

    Article  CAS  PubMed  Google Scholar 

  • Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Bickel U, Pardridge WM (1994) Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor. Drug Metab Dispos 22:99–105

    CAS  PubMed  Google Scholar 

  • Kanwar JR, Sriramoju B, Kanwar RK (2012) Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 7:3259–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S et al (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    Article  CAS  PubMed  Google Scholar 

  • Kravcik S, Gallicano K, Roth V et al (1999) Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr 21:371–375

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SA, Feng SS (2011) Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine (Lond) 6:377–394

    Article  CAS  Google Scholar 

  • Kumar A, Singh TD, Singh SK et al (2009) Methods, potentials, and limitations of gene delivery to regenerate central nervous system cells. Biologics 3:245–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laserra S, Basit A, Sozio P et al (2015) Solid lipid nanoparticles loaded with lipoyl-memantine codrug: preparation and characterization. Int J Pharm 485:183–191

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li T, Zhang X et al (2014) Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiol Aging 35:837–846

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Chen CH, Lin ZC et al (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  PubMed  Google Scholar 

  • Madrid Y, Langer LF, Brem H et al (1991) New directions in the delivery of drugs and other substances to the central nervous system. In: August JT, Anders MW, Murad F (eds) Advances in pharmacology. Academic Press, New York

    Google Scholar 

  • Mendez-Huergo SP, Maller SM, Farez MF et al (2014) Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev 25:247–255

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Chopra K, Sinha VR et al (2016) Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 23:1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Porter CJ, Muir IS et al (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177:861–866

    Article  CAS  PubMed  Google Scholar 

  • Montenegro L, Campisi A, Sarpietro MG et al (2011) In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm 37:737–746

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    Article  PubMed  Google Scholar 

  • Orlando A, Re F, Sesana S et al (2013) Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. Int J Nanomedicine 8:1335–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandita D, Kumar S, Poonia N et al (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62:1165–1174

    Article  CAS  Google Scholar 

  • Pardeshi CV, Rajput PV, Belgamwar VS et al (2013) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20:47–56

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1988) Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28:25–39

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18:157–167

    Article  CAS  PubMed  Google Scholar 

  • Pathan SA, Iqbal Z, Zaidi SM et al (2009) CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul 3:71–89

    Article  CAS  PubMed  Google Scholar 

  • Picone P, Bondi ML, Montana G et al (2009) Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res 43:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Rajput AH (1992) Frequency and cause of Parkinson’s disease. Can J Neurol Sci 19:103–107

    CAS  PubMed  Google Scholar 

  • Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 139:52–61

    Article  CAS  PubMed  Google Scholar 

  • Sakane T, Akizuki M, Yamashita S et al (1994) Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol 46:378–379

    Article  CAS  PubMed  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Sandhir R, Yadav A, Mehrotra A et al (2014) Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. NeuroMolecular Med 16:106–118

    Article  CAS  PubMed  Google Scholar 

  • Saykin AJ, Wishart HA, Rabin LA et al (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127:1574–1583

    Article  PubMed  Google Scholar 

  • Smith A, Giunta B, Bickford PC et al (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souto EB, Muller RH, Gohla S (2005) A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. J Microencapsul 22:581–592

    Article  CAS  PubMed  Google Scholar 

  • Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul 6:2–18

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Frey WH 2nd (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40:907–946

    Article  CAS  PubMed  Google Scholar 

  • Townsend SA, Evrony GD, Gu FX et al (2007) Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 28:5176–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MJ, Huang YB, Wu PC et al (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100:547–557

    Article  CAS  PubMed  Google Scholar 

  • Vedagiri A, Thangarajan S (2016) Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid beta25-35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides 58:111–125

    Article  CAS  PubMed  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  PubMed  Google Scholar 

  • Vytla D, Combs-Bachmann RE, Hussey AM et al (2012) Prodrug approaches to reduce hyperexcitation in the CNS. Adv Drug Deliv Rev 64:666–685

    Article  CAS  PubMed  Google Scholar 

  • Wang PP, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54:987–1013

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yoon S-H, Wu W-M et al (2002) Synthesis and biological evaluations of brain-targeted chemical delivery systems of [Nva2]-TRH. J Pharm Pharmacol 54:945–950

    Article  CAS  PubMed  Google Scholar 

  • Yoo JY, Kim JM, Seo KS et al (2005) Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed Mater Eng 15:279–288

    CAS  PubMed  Google Scholar 

  • Yusuf M, Khan M, Khan RA et al (2013) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21:300–311

    Article  CAS  Google Scholar 

  • Zhan S, Hou D, Ping Q et al (2010) Preparation and entrapment efficiency determination of solid lipid nanoparticles loaded levodopa. Zhongguo Yiyuan Yaoxue Zazhi 30:1171–1175

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Souza, A.A. (2019). Solid Lipid Nanoparticles: A Modern Approach for the Treatment of Neurodegenerative Diseases. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_9

Download citation

Publish with us

Policies and ethics