Skip to main content

Drug Discovery: A Biodiversity Perspective

  • Chapter
  • First Online:
Nanotechnology: Applications in Energy, Drug and Food

Abstract

Conventional drug discovery is believed to be much slower than the emerging of diseases. It could also cost pharmaceutical companies hundreds of million of dollars with no guarantee that the process would be a successful one. Therefore, new alternatives for drug discovery methods are urgently required.

Nature has been known as long as human history as very rich sources for various types of human needs including as medicinal sources. By implementing the concept of antigen versus antibody, venom versus antidote somehow taught us that Mother Nature has provided us the cures for every disease. It is just a matter of how to find the right drug for particular disease which is already available in the nature. In the United States of America alone, approximately 50% of drugs recognized by the Food and Drug Administration from the year 1981 until the year 2010 were originated from natural product pure extracts or their derivatives.

This chapter briefly described the power of nature as the abundant sources to find drugs for different kinds of illnesses include the challenges associated with the drug discovery process. By virtue of biodiversity both on land and in oceans, researchers can collect as many as possible extracts (extract library) that can be utilized as medicines through screening process. Drug discovery through screening process utilizing natural products can become a solution of the slow and expensive drug discovery process using conventional way. By the advancement of screening technology such as high throughput screening, thousands of extracts and or bioactive compounds can be screened against different types of diseases only in one day. The availability of extract library allows the acceleration of drug discovery in a faster and cheaper way.

Indonesia as one of the richest country in the world in biodiversity has high potential in providing a large collection of extracts for drug discovery purposes. One of potential plants as medicinal sources is Mangrove. Mangroves and mangrove associates widely spread along roughly 90,000 km Indonesian coastline. Indonesia is home of about 20 family with about hundreds species of mangroves and their associates. Indonesia has the largest mangrove forest or about 23% of total world mangrove forests. Taken altogether, Indonesia offers invaluable medicinal sources. This opens up many opportunities for collaboration among researchers nationally and internationally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed Y, Sohrab H, Al-Reza SM, Shahidulla Tareq F, Hasan CM, Sattar MA (2010) Antimicrobial and cytotoxic constituents from leaves of Sapium baccatum. Food Chem Toxicol 48:549–552

    Article  CAS  PubMed  Google Scholar 

  • Arslanyolu M, Erdemgil FZ (2006) Evaluation of the antibacterial activity and toxicity of isolated arctiin from the seeds of Centaurea sclerolepis. J Fac Pharm 35:103–109

    CAS  Google Scholar 

  • Atanasov AG et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33(2015):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audah KA (2015) Proceedings of the International conference on innovation, entrepreneurship and technology, 25–26 November, BSD City, Indonesia, ISSN: 2477-1538

    Google Scholar 

  • Audah KA, Amsyir J, Almasyhur F, Hapsari AM, Sutanto H (2018) Development of extract library from Indonesian biodiversity: exploration of antibacterial activity of mangrove Bruguiera cylindrica leaf extracts. IOP Conf Ser Earth Environ Sci 130(1):012025

    Article  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

    Article  PubMed  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78(2005):431–441

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake WM (2002) Bioactive compounds and chemicals constituents of mangrove plants. Wet Ecol Manag 10:421–452

    Article  CAS  Google Scholar 

  • Batubara I, Mitsunaga T (2013) Use of Indonesian medicinal plant products against acne. Rev Agric Sci 1:11–30

    Google Scholar 

  • Batubara I, Darusman LK, Mitsunaga T, Rahminiwati M, Djauhari E (2010) Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci 10(2):138144

    Google Scholar 

  • Bindseil KU, Jakupovic J, Wolf D, Lavayre J, Leboul J, van der Pyl D (2001) Pure compound libraries: a new perspective for natural product based drug discovery. Drug Discov Today 6:840–847

    Article  CAS  PubMed  Google Scholar 

  • Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3(3):435–444

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67(12):2141–2153

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 2005(22):162

    Article  Google Scholar 

  • Butler, R.A., 2016. The top 10 most biodiverse countries: What are the world’s most biodiverse countries? https://news.mongabay.com/2016/05/top-10-biodiverse-countries/ Retreved from internet on April 30, 2018

    Google Scholar 

  • Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67(2):232–244

    Article  CAS  PubMed  Google Scholar 

  • Dandapani S, Rosse G, Southall N, Salvino JM, Thomas CJ (2012) Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr Protoc Chem Biol 4:177–191. https://doi.org/10.1002/9780470559277.ch110252

    Article  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. J Microbial Biotechnol 4(6):687–699

    Article  Google Scholar 

  • Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3(5):417–429

    Article  CAS  PubMed  Google Scholar 

  • Do QT, Bernard P (2004) Pharmacognosy and reverse pharmacognosy: a new concept for accelerating natural drug discovery. IDrugs 7(11):1017–1027

    CAS  PubMed  Google Scholar 

  • de-Faria FM et al (2012) Mechanisms of action underlying the gastric antiulcer activity of the Rhizophora mangle L. J Ethnopharmacol 139(1):234–243

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth NR, Soejarto DD (2009) Global importance of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) Conservation of medicinal plants, 1st edn. Cambridge University Press, Cambridge, pp 25–52

    Google Scholar 

  • Frantz S (2005) 2004 approvals: the demise of the blockbuster? Nat Rev Drug Discov 4(2):93–94

    Article  CAS  PubMed  Google Scholar 

  • Frantz S, Smith A (2003) New drug approvals for 2002. Nat Rev Drug Discov 2(2):95–96

    Article  CAS  PubMed  Google Scholar 

  • Ganesan A (2004) Natural products as a hunting ground for combinatorial chemistry. Curr Opin Biotechnol 15(6):584–590

    Article  CAS  PubMed  Google Scholar 

  • Gaudêncio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779–810. https://doi.org/10.1039/C4NP00134F

    Article  PubMed  Google Scholar 

  • Giri C et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1):154–159

    Article  Google Scholar 

  • Graul AI (2001) The year’s new drugs. Drug News Perspect 14(1):12–31

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Achmatowicz O, Pucko W (2000) Bioactive isoflavone—genistein; synthesis and prospective applications. Herba Polon 46:151–160

    CAS  Google Scholar 

  • Guo Z (2017) The modification of natural products for medical use. Acta Pharm Sin B 7(2):119–136

    Article  PubMed  Google Scholar 

  • Gurudeeban S et al (2012) Antidiabetic effect of a black mangrove species Aegiceras corniculatum in alloxan-induced diabetic rats. J Adv Pharm Technol Res 3(1):52–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  • Hassig CA et al (2014) Ultra-high-throughput screening of natural product extracts to identify proapoptotic inhibitors of Bcl-2 family proteins. J Biomol Screen 19(8):1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA et al (2012) Antinociceptive activity of methanolic extract of Acanthus ilicifolius Linn leaves. Turk J Pharm Sci 9(1):51–60

    Google Scholar 

  • Juyal D, Thawani V, Thaledi S, Joshi M (2014) Ethnomedical properties of Taxus wallichiana Zucc. (Himalayan Yew). J Tradit Complement Med 4(3):159–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar C, Gupta A, Kanjilal S, Katiyar S (2012) Drug discovery from plant sources: an integrated approach. Ayu 33(1):10–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazanietz MG (2005) Targeting protein kinase C and “non-kinase” phorbol ester receptors: emerging concepts and therapeutic implications. Biochim Biophys Acta 1754:296

    Article  CAS  PubMed  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3):206–220

    Article  CAS  PubMed  Google Scholar 

  • Kramer R, Cohen D (2004) Functional genomics to new drug targets. Nat Rev Drug Discov 3(11):965–972

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165

    Article  CAS  PubMed  Google Scholar 

  • Liem AF, Holle E, Gemnafle IY, Wakum DS (2013) Isolasi Senyawa Saponin dari Mangrove Tanjang (Bruguiera gymnorrhiza) dan Pemanfaatannya sebagai Pestisida Nabati pada Larva Nyamuk. Jurnal Biologi Papua 5(1):29–36

    Google Scholar 

  • Liu Z (2008) Preparation of botanical samples for biomedical research. Endocr Metab Immune Disord Drug Targets 8(2):112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotsch J, Geisslinger G (2001) Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet 40(7):485–499

    Article  CAS  PubMed  Google Scholar 

  • Mann J (2000) Murder, magic and medicine, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Mayorga P, Pérez KR, Cruz SM, Cáceres A (2010) Comparison of bioassays using the anostracean crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Rev Bras Farmacogn 20:897–903

    Article  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB, Seligmann PA, Ford H (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, New York

    Google Scholar 

  • Mouafi FE et al (2014) Phytochemical analysis and antibacterial activity of mangrove leaves (Avicenna marina and Rhizophora stylosa) against some pathogens. World Appl Sci J 29(4):547–554

    Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM, Sneader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Villarreal M, Howat S, Hong SM, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49(3):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2(5):427–436

    CAS  PubMed  Google Scholar 

  • Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152(1):53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirttila T, Wilcock G, Truyen L, Damaraju CV (2004) Long-term efficacy and safety of galantamine in patients with mild-to-moderate Alzheimer’s disease: multicenter trial. Eur J Neurol 11(11):734–741

    Article  CAS  PubMed  Google Scholar 

  • Quinn RJ (2012) Basics and principles for building natural product-based libraries for HTS. In: Haian F (ed) Chemical genomics. Cambridge University Press, Cambridge

    Google Scholar 

  • Rege AA, Chowdhary AS (2013) Evaluation of mangrove plants as putative HIV-protease inhibitors. Indian Drugs 50(7):41

    Google Scholar 

  • Rohaeti, E et al. (2010) Potensi Ekstrak Rhizophora sp. Sebagai inhibitor tirosinase. Prosiding Semnas Sains III. IPB, Bogor, 13 November, pp 196–201

    Google Scholar 

  • Roy A, McDonald PR, Sittampalam S, Chaguturu R (2010) Open access high throughput drug discovery in the public domain: a Mount Everest in the making. Curr Pharm Biotechnol 11(7):764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royal Botanical Garden Report (2017) State of the world’s plants. Royal Botanic Gardens, Kew

    Google Scholar 

  • Safari VZ et al (2016) Antipyretic, antiinflammatory and antinociceptive activities of aqueous bark extract of Acacia nilotica (L.) Delile in albino mice. J Pain Manag Med 2:113

    Google Scholar 

  • Salim AA et al (2008) Drug discovery from plants. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin. https://doi.org/10.1007/978-3-540-74603-4_1

    Chapter  Google Scholar 

  • Samuelsson G (2004) Drugs of Natural Origin, 5th edn. Apotekarsocieteten, Stockholm

    Google Scholar 

  • Schroeder FC, Gronquist M (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem Int Ed 45(43):7122–7131

    Article  CAS  Google Scholar 

  • Singh CR, Kathiresan K (2015) Effect of cigarette smoking on human health and promising remedy by mangroves. Asian Pacific Journal of Tropical Biomedicine 5(2):162–167

    Article  CAS  Google Scholar 

  • Sneader W (2005) Drug discovery: a history. Wiley, Chichester

    Book  Google Scholar 

  • Tambe VD, Bhambar RS (2016) Studies on diuretics and laxative activity of the Hibiscus tiliaceus Linn. bark extracts. Int J PharmTech Res 9(3):305–310

    CAS  Google Scholar 

  • Tan DS (2004) Current progress in natural product-like libraries for discovery screening. Comb Chem High Throughput Screen 7(7):631–643

    Article  CAS  PubMed  Google Scholar 

  • Tanvira P, Seenivasan R (2014) Targeting mangrove species as an alternative for snake bite envenomation therapy with special reference to phospholipase A2 inhibitory activity: a mini review. Res J Pharm Biol Chem Sci 5(2):1724–1731

    Google Scholar 

  • Walters WP, Namchuk M (2003) Designing screens: how to make your hits a hit. Nat Rev Drug Discov 2:259–266

    Article  CAS  PubMed  Google Scholar 

  • WHO (2005) WHO guidelines for sampling of pharmaceutical products and related materials. WHO Technical Report Series, No. 929

    Google Scholar 

  • World Health Organization (‎1996) The World health report : 1996 : fighting disease, fostering development / report of the Director-General.폘Geneva : World Health Organization. http://www.who.int/iris/handle/10665/36848

  • Yi XX et al (2015) Four new cyclohexylideneacetonitrile derivatives from the hypocotyl of mangrove (Bruguiera gymnorrhiza). Molecules 20(8):14565–14575

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH (2003) Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 23(3):322–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kholis A. Audah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Audah, K.A. (2019). Drug Discovery: A Biodiversity Perspective. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_12

Download citation

Publish with us

Policies and ethics