Advertisement

Path Finding for the Coalition of Co-operative Agents Acting in the Environment with Destructible Obstacles

  • Anton AndreychukEmail author
  • Konstantin Yakovlev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11097)

Abstract

The problem of planning a set of paths for the coalition of robots (agents) with different capabilities is considered in the paper. Some agents can modify the environment by destructing the obstacles thus allowing the other ones to shorten their paths to the goal. As a result the mutual solution of lower cost, e.g. time to completion, may be acquired. We suggest an original procedure to identify the obstacles for further removal that can be embedded into almost any heuristic search planner (we use Theta*) and evaluate it empirically. Results of the evaluation show that time-to-complete the mission can be decreased up to 9–12 % by utilizing the proposed technique.

Keywords

Path planning Path finding Grid Coalition of agents Co-operative agents Co-operative path planning Multi-agent systems 

Notes

Acknowledgments

This work was supported by the “RUDN University Program 5–100” (extracting data from OpenStreetMaps to conduct the experiments) and by the RSF project #16-11-00048 (developing path planning methods and evaluating them).

References

  1. 1.
    Andreychuk, A., Yakovlev, K.: Applying MAPP algorithm for cooperative path finding in urban environments. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 1–10. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66471-2_1CrossRefGoogle Scholar
  2. 2.
    Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ferguson, D., Stentz, A.: Using interpolation to improve path planning: the field D* algorithm. J. Field Robot. 23(2), 79–101 (2006)CrossRefGoogle Scholar
  4. 4.
    Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in practice. J. Artif. Intell. Res. 56, 89–118 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  6. 6.
    Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical task and motion planning in the now. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1470–1477. IEEE (2011)Google Scholar
  7. 7.
    Khachumov, M., Khachumov, V.: The problem of target capturing by a group of unmanned flight vehicles under wind disturbances. In: 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC), pp. 90–95. IEEE (2017)Google Scholar
  8. 8.
    Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: guaranteed safety for obstacle avoidance. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 123–133. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66471-2_14CrossRefGoogle Scholar
  9. 9.
    Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  10. 10.
    Morris, R., et al.: Planning, scheduling and monitoring for airport surface operations. In: AAAI Workshop: Planning for Hybrid Systems (2016)Google Scholar
  11. 11.
    Panov, A.I., Yakovlev, K.: Behavior and path planning for the coalition of cognitive robots in smart relocation tasks. In: Kim, J.-H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. AISC, vol. 447, pp. 3–20. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-31293-4_1CrossRefGoogle Scholar
  12. 12.
    Panov, A.I., Yakovlev, K.S.: Psychologically inspired planning method for smart relocation task. Procedia Comput. Sci. 88, 115–124 (2016)CrossRefGoogle Scholar
  13. 13.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vu, Q., Nguyen, V., Solenaya, O., Ronzhin, A.: Group control of heterogeneous robots and unmanned aerial vehicles in agriculture tasks. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 260–267. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66471-2_28CrossRefGoogle Scholar
  15. 15.
    Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3260–3267. IEEE (2011)Google Scholar
  16. 16.
    Wang, K.H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. 42, 55–90 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)Google Scholar
  18. 18.
    Yakovlev, K., Andreychuk, A.: Any-angle pathfinding for multiple agents based on SIPP algorithm. In: Proceedings of the 27th International Conference on Automated Planning and Scheduling (ICAPS 2017), pp. 586–594. AAAI Press (2017)Google Scholar
  19. 19.
    Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS (LNAI), vol. 2338, pp. 44–55. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-47922-8_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of Russian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.National Research University Higher School of Economics (NRU HSE)MoscowRussia

Personalised recommendations