Skip to main content

Electronic Structure and Magnetism of Correlated Nanosystems

  • Chapter
  • First Online:
Atomic- and Nanoscale Magnetism

Part of the book series: NanoScience and Technology ((NANO))

  • 1238 Accesses

Abstract

Magnetic nanostructures based on transition metals represent a main building block of standard memory devices. Their unique electronic properties are related to a complex multiplet structure of the partially filled d-shell with strong Coulomb interactions. Starting from a general formulation of the effective multi-orbital impurity problem for a transition metal atom in a fermionic bath of conduction electrons, the exact Quantum Monte Carlo solution is discussed. The concept of Hund’s impurities to describe the electronic structure and magnetism of transition metal adatoms becomes very useful for the interpretation of numerous experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.W. Ashcroft, N.D. Mermin Solid-State Physics (Holt, Rinehart and Winston, University of California 1976), pp. 1–826

    Google Scholar 

  2. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  3. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  4. L. de Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011)

    Article  ADS  Google Scholar 

  5. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  6. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  7. A. Hausoel, M. Karolak, E. Şaşıoğlu, A. Lichtenstein, K. Held, A. Katanin, A. Toschi, G. Sangiovanni, Nat. Commun. 8, 16062 (2017)

    Article  ADS  Google Scholar 

  8. R. Cardias, A. Szilva, A. Bergman, I. Di Marco, M.I. Katsnelson, A.I. Lichtenstein, L. Nordström, A.B. Klautau, O. Eriksson, Y.O. Kvashnin, Sci. Rep. 7, 4058 (2017)

    Article  ADS  Google Scholar 

  9. M.I. Katsnelson, VYu. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  10. L. Chioncel, E. Arrigoni, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 79, 235123 (2009)

    Article  ADS  Google Scholar 

  11. L. Chioncel, Y. Sakuraba, E. Arrigoni, M.I. Katsnelson, M. Oogane, Y. Ando, T. Miyazaki, E. Burzo, A.I. Lichtenstein, Phys. Rev. Lett. 100, 086402 (2008)

    Article  ADS  Google Scholar 

  12. A. Melnikov, I. Razdolski, T.O. Wehling, E.T. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A.I. Lichtenstein, U. Bovensiepen, Phys. Rev. Lett. 107, 076601 (2011)

    Google Scholar 

  13. E.Y. Vedmedenko, N. Mikuszeit, T. Stapelfeldt, R. Wieser, M. Potthoff, A. Lichtenstein, R. Wiesendanger, Eur. Phys. J. B 80, 331 (2011)

    Article  ADS  Google Scholar 

  14. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  15. F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, O.K. Andersen, Phys. Rev. B 74, 125120 (2005)

    Article  ADS  Google Scholar 

  16. B. Amadon, F. Lechermann, A. Georges, F. Jollet, T.O. Wehling, A.I. Lichtenstein, Phys. Rev. B 77, 205112 (2008)

    Article  ADS  Google Scholar 

  17. M. Karolak, T.O. Wehling, F. Lechermann, A.I. Lichtenstein, J. Phys. Condens. Matter 23, 085601 (2011)

    Article  ADS  Google Scholar 

  18. E. Gorelov, T.O. Wehling, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 80, 155132 (2009)

    Article  ADS  Google Scholar 

  19. B. Surer, M. Troyer, Ph. Werner, A.M. Läuchli, T.O. Wehling, A. Wilhelm, A.I. Lichtenstein, Phys. Rev. B 85, 085114 (2012)

    Google Scholar 

  20. A.C. Hewson, J. Phys. Soc. Jpn. 74, 8 (2005)

    Article  ADS  Google Scholar 

  21. N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, K. Kern, Phys. Rev. Lett. 88, 096804 (2002)

    Article  ADS  Google Scholar 

  22. S. Gardonio, M. Karolak, T.O. Wehling, L. Petaccia, S. Lizzit, A. Goldoni, A.I. Lichtenstein, C. Carbone, Phys. Rev. Lett. 110, 186404 (2013)

    Article  ADS  Google Scholar 

  23. V.V. Mazurenko, S.N. Iskakov, A.N. Rudenko, I.V. Kashin, O.M. Sotnikov, M.V. Valentyuk, A.I. Lichtenstein, Phys. Rev. B 88, 085112 (2013)

    Article  ADS  Google Scholar 

  24. A.N. Rudenko, V.V. Mazurenko, V.I. Anisimov, A.I. Lichtenstein, Phys. Rev. B 79, 144418 (2009)

    Article  ADS  Google Scholar 

  25. A.B. Shick, F. Máca, A.I. Lichtenstein, Phys. Rev. B 79, 172409 (2009)

    Article  ADS  Google Scholar 

  26. J. Honolka, A.A. Khajetoorians, V. Sessi, T.O. Wehling, S. Stepanow, J.-L. Mi, B.B. Iversen, T. Schlenk, J. Wiebe, N. Brookes, A.I. Lichtenstein, Ph. Hofmann, K. Kern, R. Wiesendanger, Phys. Rev. Lett. 108, 256811 (2012)

    Google Scholar 

  27. M. Izquierdo, M. Karolak, C. Trabant, K. Holldack, A. Föhlisch, K. Kummer, D. Prabhakaran, A.T. Boothroyd, M. Spiwek, A. Belozerov, A. Poteryaev, A. Lichtenstein, S.L. Molodtsov, Phys. Rev. B 90, 235128 (2014)

    Google Scholar 

  28. M. Karolak, M. Izquierdo, S.L. Molodtsov, A.I. Lichtenstein, Phys. Rev. Lett. 115, 046401 (2015)

    Article  ADS  Google Scholar 

  29. S. Gardonio, T.O. Wehling, L. Petaccia, S. Lizzit, P. Vilmercati, A. Goldoni, M. Karolak, A.I. Lichtenstein, C. Carbone, Phys. Rev. Lett. 107, 026801 (2011)

    Article  ADS  Google Scholar 

  30. E. Gorelov, J. Kolorenč, T. Wehling, H. Hafermann, A.B. Shick, A.N. Rubtsov, A. Landa, A.K. McMahan, V.I. Anisimov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 82, 085117 (2010)

    Article  ADS  Google Scholar 

  31. A.A. Khajetoorians, M. Valentyuk, M. Steinbrecher, T. Schlenk, A. Shick, J. Kolorenč, A.I. Lichtenstein, T.O. Wehling, R. Wiesendanger, J. Wiebe, Nat. Nanotech. 10, 958 (2015)

    Article  ADS  Google Scholar 

  32. C. Carbone, M. Veronese, P. Moras, S. Gardonio, C. Grazioli, P.H. Zhou, O. Rader, A. Varykhalov, P. Gambardella, S. Lebegue, O. Eriksson, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 104, 117601 (2010)

    Google Scholar 

  33. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Phys. Rev. B 70, 195104 (2004)

    Article  ADS  Google Scholar 

  34. A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 033101 (2008)

    Article  ADS  Google Scholar 

  35. S. Brener, H. Hafermann, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 195105 (2008)

    Article  ADS  Google Scholar 

  36. H. Hafermann, M.I. Katsnelson, A.I. Lichtenstein, Europhys. Lett. 85, 37006 (2009)

    Article  ADS  Google Scholar 

  37. H. Hafermann, S. Brener, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, JETP Lett. 86, 677 (2007)

    Article  ADS  Google Scholar 

  38. M. Harland, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 94, 125133 (2016)

    Article  ADS  Google Scholar 

  39. A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Ann. Phys. 327, 1320 (2012)

    Article  ADS  Google Scholar 

  40. H. Hafermann, G. Li, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, H. Monien, Phys. Rev. Lett. 102, 206401 (2009)

    Article  ADS  Google Scholar 

  41. H. Hafermann, Ch. Jung, S. Brener, M.I. Katsnelson, A.N. Rubtsov, A.I. Lichtenstein, Europhys. Lett. 85, 27007 (2009)

    Article  ADS  Google Scholar 

  42. N. Néel, J. Kröger, R. Berndt, T. Wehling, A. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 101, 266803 (2008)

    Article  ADS  Google Scholar 

  43. N. Néel, R. Berndt, J. Kröger, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 107, 106804 (2011)

    Article  ADS  Google Scholar 

  44. M. Karolak, D. Jacob, A.I. Lichtenstein, Phys. Rev. Lett. 107, 146604 (2011)

    Article  ADS  Google Scholar 

  45. T.O. Wehling, S. Yuan, A.I. Lichtenstein, A.K. Geim, M.I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010)

    Article  ADS  Google Scholar 

  46. T.O. Wehling, E. Şaşıoğlu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blügel, Phys. Rev. Lett. 106, 236805 (2011)

    Article  ADS  Google Scholar 

  47. T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 84, 235110 (2011)

    Article  ADS  Google Scholar 

  48. B. Sachs, T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 84, 195414 (2011)

    Article  ADS  Google Scholar 

  49. T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Chem. Phys. Lett. 476, 125 (2009)

    Article  ADS  Google Scholar 

  50. T.O. Wehling, I. Grigorenko, A.I. Lichtenstein, A.V. Balatsky, Phys. Rev. Lett. 101, 216803 (2008)

    Article  ADS  Google Scholar 

  51. T.O. Wehling, A.V. Balatsky, A.M. Tsvelik, M.I. Katsnelson, A.I. Lichtenstein, Europhys. Lett. 84, 17003 (2008)

    Article  ADS  Google Scholar 

  52. T.O. Wehling, A.V. Balatsky, M.I. Katsnelson, A.I. Lichtenstein, K. Scharnberg, R. Wiesendanger, Phys. Rev. B 75, 125425 (2007)

    Article  ADS  Google Scholar 

  53. T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Appl. Phys. Lett. 93, 202110 (2008)

    Article  ADS  Google Scholar 

  54. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Nano Lett. 8, 173 (2008)

    Article  ADS  Google Scholar 

  55. S.J. Altenburg, J. Kröger, T.O. Wehling, B. Sachs, A.I. Lichtenstein, R. Berndt. Phys. Rev. Lett. 108, 206805 (2012)

    Google Scholar 

  56. L.V. Dzemiantsova, M. Karolak, F. Lofink, A. Kubetzka, B. Sachs, K. von Bergmann, S. Hankemeier, T.O. Wehling, R. Frömter, H.P. Oepen, A.I. Lichtenstein, R. Wiesendanger, Phys. Rev. B 84, 205431 (2011)

    Article  ADS  Google Scholar 

  57. M. Gyamfi, T. Eelbo, M. Waśniowska, T.O. Wehling, S. Forti, U. Starke, A.I. Lichtenstein, M.I. Katsnelson, R. Wiesendanger, Phys. Rev. B 85, 161406 (2012)

    Article  ADS  Google Scholar 

  58. T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs, T.O. Wehling, S. Forti, U. Starke, C. Tieg, A.I. Lichtenstein, R. Wiesendanger, Phys. Rev. Lett. 110, 136804 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Alexey Rubtsov, Mikhail Katsnelson, Tim Wehling, Frank Lechermann, Vladimir Mazurenko, Livio Chioncel, Hartmut Hafermann, Sergey Iskakov, Evgeny Gorelov, Alexander Rudenko, Yaroslav Kvashnin, Alexander Shick, Jindřich Kolorenč, Philipp Werner and Olle Eriksson for the intense and fruitful cooperation over the years. Financial support of this work by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 668 (project A3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lichtenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lichtenstein, A., Valentyuk, M., Mozara, R., Karolak, M. (2018). Electronic Structure and Magnetism of Correlated Nanosystems. In: Wiesendanger, R. (eds) Atomic- and Nanoscale Magnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99558-8_3

Download citation

Publish with us

Policies and ethics