Skip to main content

Plant Secondary Metabolites and Their General Function in Plants

Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Primary metabolites are compounds that are associated with essential cellular functions. Therefore, they are very much ubiquitously found in all plants. By contrast, secondary metabolites have much more specific functions. They are often species specific and can be dispensable under many conditions. Nevertheless, the basis of most secondary metabolites are by-products or intermediates of primary metabolism. Secondary metabolites do not generally increase a plant fitness, but in the natural environment, they might be essential for survival and reproduction. They are thus mostly made under controlled conditions for a specific purpose such as defence against pathogens and herbivores, improved tolerance to abiotic stresses, attraction of insects and animals for fertilization and/or seed dispersal or repellence of unwanted feeders.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99546-5_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-99546-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

References

  • Adewusi SRA (1990) Turnover of Dhurrin in green Sorghum seedlings. Plant Physiol 94(3):1219–1224

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    CAS  PubMed  CrossRef  Google Scholar 

  • Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY, Schmelz EA (1997) Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201(4):397–404

    CAS  CrossRef  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng CY, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li KJ, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WWGT, Wipf D, Wolf PG, Yang LX, Zimmer AD, Zhu QH, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032):960–963

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292. https://doi.org/10.1146/annurev.ecolsys.29.1.263

    CrossRef  Google Scholar 

  • Buban T, Orosz-Kovacs Z, Farkas A (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol 238(1–4):183–194

    CrossRef  Google Scholar 

  • Buchanan BB, Gruissem W, Vickers K, Jones RL (2015) Biochemistry and molecular biology of plants. Wiley-Blackwell, New York

    Google Scholar 

  • Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80(2):91–124

    CrossRef  Google Scholar 

  • Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62(6):815–816

    CAS  PubMed  CrossRef  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Eisner T, Eisner M (1991) Unpalatability of the Pyrrolizidine alkaloid-containing moth Utetheisa Ornatrix, and its larva, to wolf spiders. Psyche 98(1):111–118. https://doi.org/10.1155/1991/95350

    CrossRef  Google Scholar 

  • Errera L, Durand T (1886) Efficacité des structures défensives des plantes. Bulletin de la Societé Royale de Botanique de Belgique / Bulletin van de Koninklijke Belgische Botanische Vereniging 25:79–103

    Google Scholar 

  • Euler M, Baldwin IT (1996) The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107(1):102–112

    PubMed  CrossRef  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication – airborne methyl Jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proc Natl Acad Sci U S A 87(19):7713–7716

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foley WJ, Moore BD (2005) Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem function. Curr Opin Plant Biol 8(4):430–435

    CAS  PubMed  CrossRef  Google Scholar 

  • Fraenkel GS (1959) Raison detre of secondary plant substances. Science 129(3361):1466–1470

    CAS  PubMed  CrossRef  Google Scholar 

  • Gunduz A, Turedi S, Russell RM, Ayaz FA (2008) Clinical review of grayanotoxin/mad honey poisoning past and present. Clin Toxicol 46(5):437–442

    CAS  CrossRef  Google Scholar 

  • Hartmann T (1996) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol Exp Appl 80(1):177–188

    CAS  CrossRef  Google Scholar 

  • Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci U S A 105(12):4541–4546. https://doi.org/10.1073/pnas.0709231105

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Heckel DG (2014) Insect detoxification and sequestration strategies. In: Annual Plant Reviews. John Wiley & Sons, Ltd, pp 77–114. https://doi.org/10.1002/9781118829783.ch3

    CrossRef  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation, and ecological functions. Trends Plant Sci 16(4):191–200. https://doi.org/10.1016/j.tplants.2011.01.003

    CAS  PubMed  CrossRef  Google Scholar 

  • Holzinger F, Frick C, Wink M (1992) Molecular-basis for the insensitivity of the monarch (Danaus-Plexippus) to cardiac-glycosides. FEBS Lett 314(3):477–480

    CAS  PubMed  CrossRef  Google Scholar 

  • Irwin RE, Adler LS, Brody AK (2004) The dual role of floral traits: pollinator attraction and plant defense. Ecology 85(6):1503–1511

    CrossRef  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms - the fruits the Gomphotheres ate. Science 215(4528):19–27

    CAS  PubMed  CrossRef  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17(1):44–52

    PubMed  CrossRef  Google Scholar 

  • Kerner von Marilaun A (1879) Die Schutzmittel der Blüthen gegen unberufene Gaste. K.K. Zoologisch-Botanische Gesellschaft, Wien

    Google Scholar 

  • Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124(2):599–608. https://doi.org/10.1104/pp.124.2.599

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci U S A 111(4):1245–1252. https://doi.org/10.1073/pnas.1314848111

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 106(11):4495–4500

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lee Y, Moon SJ, Wang YJ, Montell C (2015) A Drosophila gustatory receptor required for strychnine sensation. Chem Senses 40(7):525–533

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lowry B, Hebant C, Lee D (1980) The origin of land plants - a new look at an old problem. Taxon 29(2–3):183–197

    CrossRef  Google Scholar 

  • Moller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13(3):338–347

    CAS  PubMed  CrossRef  Google Scholar 

  • Morrissey JP, Wubben JP, Osbourn AE (2000) Stagonospora avenae secretes multiple enzymes that hydrolyze oat leaf saponins. Mol Plant-Microbe Interact 13(10):1041–1052

    CAS  PubMed  CrossRef  Google Scholar 

  • Ness JH (2003) Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia 134(2):210–218

    CAS  PubMed  CrossRef  Google Scholar 

  • Petit C, Hossaert-McKey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5(4):585–589

    CrossRef  Google Scholar 

  • Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566. https://doi.org/10.1146/annurev-arplant-042110-103814

    CAS  PubMed  CrossRef  Google Scholar 

  • Rehman F, Khan FA, Badruddin SMA (2012) Role of Phenolics in plant defense against insect herbivory. In: Khemani LD, Srivastava MM, Srivastava S (eds) Chemistry of Phytopotentials: health, energy and environmental perspectives. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 309–313. https://doi.org/10.1007/978-3-642-23394-4_65

    CrossRef  Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62(6):837–849

    CAS  PubMed  CrossRef  Google Scholar 

  • Stahl E (1888) Pflanzen und Schnecken. Biologische Studien über die Schutzmittel der Pflanzen gegen Schneckenfraß. Jenaische Z Naturwiss 15:557–684

    Google Scholar 

  • Stephenson AG (1982) Iridoid glycosides in the nectar of Catalpa-Speciosa are unpalatable to nectar thieves. J Chem Ecol 8(7):1025–1034

    CAS  PubMed  CrossRef  Google Scholar 

  • Suarez-Rodriguez M, Lopez-Rull I, Garcia CM (2013) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe. Biol Lett 9(1):20120931

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1(4):109–113

    CrossRef  Google Scholar 

  • Weng JK, Philippe RN, Noel JP (2012) The rise of Chemodiversity in plants. Science 336(6089):1667–1670

    CAS  PubMed  CrossRef  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5(4):300–307. https://doi.org/10.1016/S1369-5266(02)00264-9

    CAS  PubMed  CrossRef  Google Scholar 

  • Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26(11):1466–1487

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma XH, Jia J, Tan Y, Cui C, Lin JS, Tan CY, Jiang YY, Chen YZ (2011) Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci U S A 108(31):12943–12948

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Böttger .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Böttger, A., Vothknecht, U., Bolle, C., Wolf, A. (2018). Plant Secondary Metabolites and Their General Function in Plants. In: Lessons on Caffeine, Cannabis & Co. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99546-5_1

Download citation