Skip to main content

Spatial Parallel Robots

  • Chapter
  • First Online:
Dynamics of Parallel Robots

Part of the book series: Parallel Robots: Theory and Applications ((PRTA))

Abstract

We have already seen that parallel structures have a number of advantages over serial manipulators such as higher payload since this is divided by several legs, has higher accuracy due to none cumulative joint errors, higher structural stiffness, since the load is usually carried by some links and, also, the location of motors are closed to the base. Due to these clear advantages, parallel robots have attracted many researchers and considerable efforts have been devoted to the kinematics and dynamics of these mechanisms. There is a great deal of scope opening up for possible applications of parallel robots in non-traditional field such as like surgical robots and rehabilitation robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  2. Clavel, R.: Delta: a fast robot with parallel geometry. In: Proceedings of 18th International Symposium on Industrial Robots, Sydney, pp. 91–100 (1988)

    Google Scholar 

  3. Tsai, L.-W., Stamper, R.: A parallel manipulator with only translational degrees of freedom. In: Proceedings of ASME Design Engineering Technical Conferences, Irvine, CA (1996)

    Google Scholar 

  4. Chablat, D., Wenger, P., Staicu, S.: Dynamics of the orthoglide parallel robot. UPB Sci. Bull. Ser. D: Mech. Eng. 71(3), 3–16 (2009)

    Google Scholar 

  5. Staicu, S.: Dynamics analysis of the Star parallel manipulator. Robot. Auton. Syst. 57(11), 1057–1064 (2009)

    Article  Google Scholar 

  6. Staicu, S.: Matrix modeling of inverse dynamics of spatial and planar parallel robots. Multibody Syst. Dyn. 27(2), 239–265 (2012)

    Article  MathSciNet  Google Scholar 

  7. Li, Y.-W., Wang, J., Wang, L.-P., Liu, X.-J.: Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. In: Proceedings of the IEEE International Conference on Robotics & Automation, ICRA’2003, Taipei, vol. 3, pp. 4092–4097 (2003)

    Google Scholar 

  8. Carricato, M., Parenti-Castelli, V.: Singularity-free fully-isotropic translational parallel mechanisms. Int. J. Robot. Res. 21(2), 161–164 (2002)

    Article  Google Scholar 

  9. Chablat, D., Wenger, P.: Architecture optimization of a 3-DOF parallel mechanism for machining applications: the Orthoglide. IEEE Trans. Robot. Autom. 19(3), 403–410 (2003)

    Article  Google Scholar 

  10. Ibrahim, O., Khalil, W.: Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory 45(4), 627–640 (2010)

    Article  Google Scholar 

  11. Chen, G., Yu, W., Li, Q., Wang, H.: Dynamic modeling and performance analysis of the 3-PRRU 1T2R parallel manipulator without parasitic motion. Nonlinear Dyn. 90(1), 339–353 (2017)

    Article  Google Scholar 

  12. Dasgupta, B., Mruthyunjaya, T.S.: A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Xu, Q.: Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica 23(2), 219–229 (2005)

    Article  Google Scholar 

  14. Miller, K., Clavel, R.: The Lagrange-based model of Delta-4 robot dynamics. Robotersysteme 8, 49–54 (1992)

    Google Scholar 

  15. Xin, G., Deng, H., Zhong, G.: Closed-form dynamics of a 3-DOF spatial parallel manipulator by combining the lagrangian formulation with the virtual work principle. Nonlinear Dyn. 86(2), 1329–1347 (2016)

    Article  Google Scholar 

  16. Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput.-Integr. Manuf. 24(1), 167–172 (2008)

    Article  Google Scholar 

  17. Tsai, L.-W.: Solving the inverse dynamics of Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122(1), 3–9 (2000)

    Article  Google Scholar 

  18. Zhang, C.-D., Song, S.-M.: An efficient method for inverse dynamics of manipulators based on virtual work principle. J. Robot. Syst. 10(5), 605–627 (1993)

    Article  Google Scholar 

  19. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2002)

    MATH  Google Scholar 

  20. Gosselin, C., Angeles, J.: The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. ASME J. Mech. Transm. Automat. Des. 111(2), 202–207 (1989)

    Article  Google Scholar 

  21. Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)

    Article  Google Scholar 

  22. Staicu, S.: Dynamics of the spherical 3-UPS/S parallel mechanism with prismatic actuators. Multibody Syst. Dyn. 22(2), 115–132 (2009)

    Article  Google Scholar 

  23. Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2(3), 317–334 (1998)

    Article  MathSciNet  Google Scholar 

  24. Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. J. Intell. Robot. Sys. 49(1), 19–37 (2007)

    Article  Google Scholar 

  25. Baron, L., Angeles, J.: The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans. Robot. Autom. 16(1), 12–19 (2000)

    Article  Google Scholar 

  26. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng., Part. I 180(15), 371–386 (1965)

    Google Scholar 

  27. Liu, X.-J., Jeong, J., Kim, J.: A three translational DOFs parallel cube-manipulator. Robotica 21(6), 645–653 (2003)

    Article  Google Scholar 

  28. Xi, F., Angelico, O., Sinatra, R.: Tripod dynamics and its inertia effects. J. Mech. Des. 127(1), 144–149 (2005)

    Article  Google Scholar 

  29. Li, Y., Staicu, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)

    Article  MathSciNet  Google Scholar 

  30. Cheng, G., Shan, X.: Dynamics analysis of a parallel hip-joint simulator with four degree of freedoms (3R1T). Nonlinear Dyn. 70(4), 2475–2486 (2012)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Zhang, N., Chai, X., Li, Q.: Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator. Nonlinear Dyn. 88(1), 503–519 (2017)

    Article  Google Scholar 

  32. Kalani, H., Rezaei, A., Akbarzadeh, A.: Improved general solution for the dynamic modeling of Gough-Stewart platform based on principle of virtual work. Nonlinear Dyn. 83(4), 2393–2418 (2016)

    Article  MathSciNet  Google Scholar 

  33. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)

    Article  Google Scholar 

  34. Didrit, O., Petitot, M., Walter, E.: Guaranteed solution of direct kinematic problems for general configurations of parallel manipulator. IEEE Trans. Robot. Autom. 14(2), 259–266 (1998)

    Article  Google Scholar 

  35. Yuan, W., Tsai, M.: A novel approach for forward dynamic analysis of 3-PRS parallel manipulator with consideration of friction effect. Robot. Comput.-Integr. Manuf. 30(3), 315–325 (2014)

    Article  Google Scholar 

  36. Salinic, S.: Determination of joint reaction forces in a symbolic form in rigid multibody systems. Mech. Mach. Theory 46(11), 1796–1810 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Staicu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staicu, S. (2019). Spatial Parallel Robots. In: Dynamics of Parallel Robots. Parallel Robots: Theory and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-99522-9_9

Download citation

Publish with us

Policies and ethics