First Place Solution for NLPCC 2018 Shared Task User Profiling and Recommendation

  • Qiaojing Xie
  • Yuqian Wang
  • Zhenjing Xu
  • Kaidong Yu
  • Chen WeiEmail author
  • ZhiChen Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11109)


Social networking sites have been growing at an unprecedented rate in recent years. User profiling and personalized recommendation plays an important role in social networking, such as targeting advertisement and personalized news feed. For NLPCC Task 8, there are two subtasks. Subtask one is User Tags Prediction (UTP), which is to predict tags related to a user. We consider UTP as a Multi Label Classification (MLC) problem and proposed a CNN-RNN framework to explicitly exploit the label dependencies. The proposed framework employs CNN to get the user profile representation and the RNN module captures the dependencies among labels. Subtask two, User Following Recommendation (UFR), is to recommend friends to the users. There are mainly two approaches: Collaborative Filtering (CF) and Most Popular Friends (MPF), and we adopted a combination of both. Our experiments show that both of our methods yield clear improvements in F1@K compared to other algorithms and achieved first place in both subtasks.


User profiling User tags prediction Multi label classification Friend recommendation 


  1. 1.
    Li, J., Ritter, A., Hovy, E.: Weakly supervised user profile extraction from twitter. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, (Volume 1: Long Papers), vol. 1, pp. 165–174 (2014)Google Scholar
  2. 2.
    Lai, Y., Xu, X., Yang, Z., et al.: User interest prediction based on behaviors analysis. Int. J. Digit. Content Technol. Appl, 6(13) (2012)Google Scholar
  3. 3.
    Wu, W., Zhang, B., Ostendorf, M.: Automatic generation of personalized annotation tags for twitter users. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics 2010, pp. 689–692 (2010)Google Scholar
  4. 4.
    Yin, D., Xue, Z., Hong, L., et al.: A probabilistic model for personalized tag prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 959–968 (2010)Google Scholar
  5. 5.
    Li, C.L., Lin, H.T.: Condensed filter tree for cost-sensitive multi-label classification. In: International Conference on Machine Learning, pp. 423–431 (2014)Google Scholar
  6. 6.
    Wang, J., Yang, Y., Mao, J., et al.: Cnn-rnn: a unified framework for multi-label image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294. IEEE (2016)Google Scholar
  7. 7.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. Data mining and knowledge discovery handbook, pp. 667–685. Springer, Boston (2009)Google Scholar
  8. 8.
    Read, J., Pfahringer, B., Holmes, G.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv preprint arXiv:1408.5882
  10. 10.
    Chin, A., Xu, B., Wang, H.: Who should I add as a “friend”?: a study of friend recommendations using proximity and homophily. In: International Workshop on Modeling Social Media, pp. 1–7 (2013)Google Scholar
  11. 11.
    Xiao, P., Fan, Y.Q., Du, Y.J.: A personality-aware followee recommendation model based on text semantics and sentiment analysis. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 503–514. Springer, Cham (2018). Scholar
  12. 12.
    Wang, Z., Liao, J., Cao, Q.: Friendbook: a semantic-based friend recommendation system for social networks. IEEE Trans. Mob. Comput. 14(3), 538–551 (2016)CrossRefGoogle Scholar
  13. 13.
    Gou, L., You, F., Guo, J., et al.: SFViz:interest-based friends exploration and recommendation in social networks. In: International Symposium on Visual Information Communication, pp. 1–10. ACM (2011)Google Scholar
  14. 14.
    Feng, S., Zhang, L., Wang, D.: A Unified Microblog User Similarity Model for Online Friend Recommendation. Commun. Comput. Inf. Sci. 496, 286–298 (2014)Google Scholar
  15. 15.
    Hannon, J., Bennett, M., Smyth, B.: Recommending Twitter users to follow using content and collaborative filtering approaches. ACM Conference on Recommender Systems, pp. 199–206. ACM (2010)Google Scholar
  16. 16.
    Chen, T., Tang, L., Liu, Q., et al.: Combining factorization model and additive forest for collaborative followee recommendation. In: KDD-Cup Workshop (2012)Google Scholar
  17. 17.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2009)Google Scholar
  18. 18.
    Liu, Y., Chen, X., Li, S., Wang, L.: A user adaptive model for followee recommendation on Twitter. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 425–436. Springer, Cham (2016). Scholar
  19. 19.
    Ding, D., Zhang, M., Li, S.Y., et al.: BayDNN: Friend Recommendation with Bayesian Personalized Ranking Deep Neural Network. In; Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1479–1488. ACM (2017)Google Scholar
  20. 20.
    Cheng, H.T., Koc, L., Harmsen, J., et al.: Wide & deep learning for recommender systems. In: The Workshop on Deep Learning for Recommender Systems. ACM, pp. 7–10 (2016)Google Scholar
  21. 21.
    Che, W., Li, Z., Liu, T.: LTP: A Chinese language technology platform. In: Proceedings of the Coling 2010, Demonstrations, Beijing, China, pp. 13–16, August 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Qiaojing Xie
    • 1
  • Yuqian Wang
    • 1
  • Zhenjing Xu
    • 1
  • Kaidong Yu
    • 1
  • Chen Wei
    • 1
    Email author
  • ZhiChen Yu
    • 1
  1. 1.Turing RobotBeijingChina

Personalised recommendations