Neural Question Generation with Semantics of Question Type

  • Xiaozheng Dong
  • Yu HongEmail author
  • Xin Chen
  • Weikang Li
  • Min Zhang
  • Qiaoming Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11109)


This paper focuses on automatic question generation (QG) that transforms a narrative sentence into an interrogative sentence. Recently, neural networks have been used in this task due to its extraordinary ability of semantics encoding and decoding. We propose an approach which incorporates semantics of the possible question type. We utilize the Convolutional Neural Network (CNN) for predicting question type of the answer phrases in the narrative sentence. In order to incorporate the question type semantics into the generating process, we classify the question type which the answer phrases refer to. In addition, We use Bidirectional Long Short Term Memory (Bi-LSTM) to construct the question generating model. The experiment results show that our method outperforms the baseline system with the improvement of 1.7% on BLEU-4 score and beyonds the state-of-the-art.


Question generation Question type Answer phrases 



This work was supported by the national Natural Science Foundation of China via Nos. 2017YFB1002104, 61672368 and 61672367.


  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
  2. 2.
    Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G., (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer (2010).
  3. 3.
    Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.: Microsoft coco captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
  4. 4.
    Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
  5. 5.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)zbMATHGoogle Scholar
  6. 6.
    De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Annal. Oper. Res. 134(1), 19–67 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Denkowski, M., Lavie, A.: Meteor universal: Language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 376–380 (2014)Google Scholar
  8. 8.
    Du, X., Shao, J., Cardie, C.: Learning to ask: Neural question generation for reading comprehension. arXiv preprint arXiv:1705.00106 (2017)
  9. 9.
    Duan, N., Tang, D., Chen, P., Zhou, M.: Question generation for question answering. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 866–874 (2017)Google Scholar
  10. 10.
    Heilman, M., Smith, N.A.: Good question! statistical ranking for question generation. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 609–617. Association for Computational Linguistics (2010)Google Scholar
  11. 11.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  12. 12.
    Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out (2004)Google Scholar
  13. 13.
    Liu, M., Rus, V., Liu, L.: Automatic chinese factual question generation. IEEE Trans. Learn. Technol. 10(2), 194–204 (2017)CrossRefGoogle Scholar
  14. 14.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting on association for computational linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  15. 15.
    Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  16. 16.
    Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
  17. 17.
    Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., Moldovan, C.: The first question generation shared task evaluation challenge. In: Proceedings of the 6th International Natural Language Generation Conference, pp. 251–257. Association for Computational Linguistics (2010)Google Scholar
  18. 18.
    Schwarz, B., Kirchgässner, W., Landwehr, R.: An optimizer for ADA-design, experiences and results. In: ACM SIGPLAN Notices, vol. 23, pp. 175–184. ACM (1988)Google Scholar
  19. 19.
    Voorhees, E.M., et al.: The TREC-8 question answering track report. In: Trec, vol. 99, pp. 77–82 (1999)Google Scholar
  20. 20.
    Zhou, Q., Yang, N., Wei, F., Tan, C., Bao, H., Zhou, M.: Neural question generation from text: a preliminary study. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 662–671. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xiaozheng Dong
    • 1
  • Yu Hong
    • 1
    Email author
  • Xin Chen
    • 1
  • Weikang Li
    • 1
  • Min Zhang
    • 1
  • Qiaoming Zhu
    • 1
  1. 1.School of Computer Science and Technology of Jiangsu ProvinceSoochow UniversitySuzhouChina

Personalised recommendations