Skip to main content

Reversibility in Space, Time, and Computation: The Case of Underwater Acoustic Communications

Work in Progress Report

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Abstract

Time reversal of waves has been successfully used in communications, sensing and imaging for decades. The application in underwater acoustic communications is of our special interest, as it puts together a reversible process (allowing a reversible software or hardware realisation) and a reversible medium (allowing a reversible model of the environment). This work in progress report addresses the issues of modelling, analysis and implementation of acoustic time reversal from the reversible computation perspective. We show the potential of using reversible cellular automata for modelling and quantification of reversibility in the time reversal communication process. Then we present an implementation of time reversal hardware based on reversible circuits.

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2077. The project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 713567 and was partially supported by the COST Action IC1405.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    From the electronic point of view, these elements are piezo transducers capable of converting mechanical to electrical energy while operating as receivers and the opposite while operating as transmitters. From the communications standpoint, they are transceivers, and from the everyday standpoint they are microphones/speakers.

  2. 2.

    Partitioning of cellular automata is an approach rules are applied to blocks of cells and the blocks change in successive time steps. Different approaches exist, depending on the grid shape, e.g. Margolus neighbourhood for square grids, and Star of David and Q*Bert neighbourhoods for hexagonal grids.

References

  1. De Vos, A., Burignat, S., Thomsen, M.: Reversible implementation of a discrete integer linear transformation. In: 2nd Workshop on Reversible Computation (RC 2010), pp. 107–110. Universität Bremen (2010)

    Google Scholar 

  2. Draeger, C., Aime, J.C., Fink, M.: One-channel time-reversal in chaotic cavities: experimental results. J. Acoust. Soc. Am. 105(2), 618–625 (1999)

    Article  Google Scholar 

  3. Fink, M.: Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992)

    Article  Google Scholar 

  4. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56(14), 1505 (1986)

    Article  Google Scholar 

  5. Landauer, R.: Parametric standing wave amplifiers. Proc. Inst. Radio Eng. 48(7), 1328–1329 (1960)

    Google Scholar 

  6. Lemoult, F., Ourir, A., de Rosny, J., Tourin, A., Fink, M., Lerosey, G.: Time reversal in subwavelength-scaled resonant media: beating the diffraction limit. Int. J. Microw. Sci. Technol. 2011 (2011)

    Google Scholar 

  7. Lerosey, G., De Rosny, J., Tourin, A., Derode, A., Montaldo, G., Fink, M.: Time reversal of electromagnetic waves. Phys. Rev. Lett. 92(19), 193904 (2004)

    Article  Google Scholar 

  8. Li, J.: Reversible FFT and MDCT via matrix lifting. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 (ICASSP 2004), vol. 4, p. iv. IEEE (2004)

    Google Scholar 

  9. Margolus, N., Toffoli, T., Vichniac, G.: Cellular-automata supercomputers for fluid-dynamics modeling. Phys. Rev. Lett. 56(16), 1694 (1986)

    Article  Google Scholar 

  10. McKerrow, P.J., Zhu, S.M., New, S.: Simulating ultrasonic sensing with the lattice gas model. IEEE Trans. Robot. Autom. 17(2), 202–208 (2001)

    Article  Google Scholar 

  11. Popoff, S.M., Aubry, A., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107(26), 263901 (2011)

    Article  Google Scholar 

  12. Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible fourier transform chip. In: 15th International Conference on Mixed Design of Integrated Circuits and Systems, 2008, MIXDES 2008, pp. 281–286. IEEE (2008)

    Google Scholar 

  13. Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  14. Taddese, B., Johnson, M., Hart, J., Antonsen Jr., T., Ott, E., Anlage, S.: Chaotic time-reversed acoustics: sensitivity of the loschmidt echo to perturbations. Acta Phys. Pol. A 116(5), 729 (2009)

    Article  Google Scholar 

  15. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A Math. Theor. 43(38), 382002 (2010)

    Article  MathSciNet  Google Scholar 

  16. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  17. Wolf-Gladrow, D.A.: Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. LNM, vol. 1725. Springer, Heidelberg (2000). https://doi.org/10.1007/b72010

    Book  MATH  Google Scholar 

  18. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Proceedings of the 5th Conference on Computing Frontiers, pp. 43–54. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Siljak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siljak, H. (2018). Reversibility in Space, Time, and Computation: The Case of Underwater Acoustic Communications. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics