Advertisement

Reversibility in Space, Time, and Computation: The Case of Underwater Acoustic Communications

Work in Progress Report
  • Harun SiljakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11106)

Abstract

Time reversal of waves has been successfully used in communications, sensing and imaging for decades. The application in underwater acoustic communications is of our special interest, as it puts together a reversible process (allowing a reversible software or hardware realisation) and a reversible medium (allowing a reversible model of the environment). This work in progress report addresses the issues of modelling, analysis and implementation of acoustic time reversal from the reversible computation perspective. We show the potential of using reversible cellular automata for modelling and quantification of reversibility in the time reversal communication process. Then we present an implementation of time reversal hardware based on reversible circuits.

Keywords

Acoustic time reversal Digital signal processing Lattice gas Reversible cellular automata Reversible circuits 

References

  1. 1.
    De Vos, A., Burignat, S., Thomsen, M.: Reversible implementation of a discrete integer linear transformation. In: 2nd Workshop on Reversible Computation (RC 2010), pp. 107–110. Universität Bremen (2010)Google Scholar
  2. 2.
    Draeger, C., Aime, J.C., Fink, M.: One-channel time-reversal in chaotic cavities: experimental results. J. Acoust. Soc. Am. 105(2), 618–625 (1999)CrossRefGoogle Scholar
  3. 3.
    Fink, M.: Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992)CrossRefGoogle Scholar
  4. 4.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56(14), 1505 (1986)CrossRefGoogle Scholar
  5. 5.
    Landauer, R.: Parametric standing wave amplifiers. Proc. Inst. Radio Eng. 48(7), 1328–1329 (1960)Google Scholar
  6. 6.
    Lemoult, F., Ourir, A., de Rosny, J., Tourin, A., Fink, M., Lerosey, G.: Time reversal in subwavelength-scaled resonant media: beating the diffraction limit. Int. J. Microw. Sci. Technol. 2011 (2011)Google Scholar
  7. 7.
    Lerosey, G., De Rosny, J., Tourin, A., Derode, A., Montaldo, G., Fink, M.: Time reversal of electromagnetic waves. Phys. Rev. Lett. 92(19), 193904 (2004)CrossRefGoogle Scholar
  8. 8.
    Li, J.: Reversible FFT and MDCT via matrix lifting. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 (ICASSP 2004), vol. 4, p. iv. IEEE (2004)Google Scholar
  9. 9.
    Margolus, N., Toffoli, T., Vichniac, G.: Cellular-automata supercomputers for fluid-dynamics modeling. Phys. Rev. Lett. 56(16), 1694 (1986)CrossRefGoogle Scholar
  10. 10.
    McKerrow, P.J., Zhu, S.M., New, S.: Simulating ultrasonic sensing with the lattice gas model. IEEE Trans. Robot. Autom. 17(2), 202–208 (2001)CrossRefGoogle Scholar
  11. 11.
    Popoff, S.M., Aubry, A., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107(26), 263901 (2011)CrossRefGoogle Scholar
  12. 12.
    Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible fourier transform chip. In: 15th International Conference on Mixed Design of Integrated Circuits and Systems, 2008, MIXDES 2008, pp. 281–286. IEEE (2008)Google Scholar
  13. 13.
    Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  14. 14.
    Taddese, B., Johnson, M., Hart, J., Antonsen Jr., T., Ott, E., Anlage, S.: Chaotic time-reversed acoustics: sensitivity of the loschmidt echo to perturbations. Acta Phys. Pol. A 116(5), 729 (2009)CrossRefGoogle Scholar
  15. 15.
    Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A Math. Theor. 43(38), 382002 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  17. 17.
    Wolf-Gladrow, D.A.: Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. LNM, vol. 1725. Springer, Heidelberg (2000).  https://doi.org/10.1007/b72010CrossRefzbMATHGoogle Scholar
  18. 18.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Proceedings of the 5th Conference on Computing Frontiers, pp. 43–54. ACM (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CONNECT CentreTrinity College DublinDublinIreland

Personalised recommendations